Abstract The terminal Ediacaran Shibantan biota (~550–543 Ma) from the Dengying Formation in the Yangtze Gorges area of South China represents one of the rare examples of carbonate-hosted Ediacara-type macrofossil assemblages. In addition to the numerically dominant taxa—the non-biomineralizing tubular fossilWutubusand discoidal fossilsAspidellaandHiemalora, the Shibantan biota also bears a moderate diversity of frondose fossils, includingPteridinium,Rangea,Arborea, andCharnia. In this paper, we report two species of the rangeomorph genusCharnia, including the type speciesCharnia masoniFord, 1958 emend. andCharnia gracilisnew species, from the Shibantan biota. Most of the ShibantanCharniaspecimens preserve only the petalodium, with a few bearing the holdfast and stem. Despite overall architectural similarities to otherCharniaspecies, the Shibantan specimens ofCharnia gracilisn. sp. are distinct in their relatively straight, slender, and more acutely angled first-order branches. They also show evidence that may support a two-stage growth model and a epibenthic sessile lifestyle.Charniafossils described herein represent one of the youngest occurrences of this genus and extend its paleogeographic and stratigraphic distributions. Our discovery also highlights the notable diversity of the Shibantan biota, which contains examples of a wide range of Ediacaran morphogroups. UUID:http://zoobank.org/837216cd-4a4a-4e13-89e2-ee354ba48a4c
more »
« less
Orientations of Mistaken Point Fronds Indicate Morphology Impacted Ability to Survive Turbulence
The Ediacaran fossils of the Mistaken Point E surface have provided crucial insight into early animal communities, including how they reproduced, the importance of Ediacaran height and what the most important factors were to their community dynamics. Here, we use this iconic community to investigate how morphological variation between eight taxa affected their ability to withstand different flow conditions. For each ofBeothukis,Bradgatia,Charniodiscus procerus,Charniodiscus spinosus,Plumeropriscum,Primocandelabrum,ThectardisandFractofususwe measured the orientation and length of their stems (if present) and their fronds. We statistically tested each taxon’s stem and frond orientation distributions to see whether they displayed a uniform or multimodal distribution. Where multimodal distributions were identified, the stem/frond length of each cohort was tested to identify if there were differences in size between different orientation groups. We find thatBradgatiaandThectardisshow a bimodal felling direction, and infer that they were felled by the turbulent head of the felling flow. In contrast, the frondose rangeomorphs includingBeothukis, Plumeropriscum, Primocandelabrum, and the arboreomorphs were felled in a single direction, indicating that they were upright in the water column, and were likely felled by the laminar tail of the felling flow. These differences in directionality suggests that an elongate habit, and particularly possession of a stem, lent greater resilience to frondose taxa against turbulent flows, suggesting that such taxa would have had improved survivability in conditions with higher background turbulence than taxa likeBradgatiaandThectardis, that lacked a stem and had a higher centre of mass, which may have fared better in quieter water conditions.
more »
« less
- Award ID(s):
- 2007928
- PAR ID:
- 10495949
- Publisher / Repository:
- Frontiers
- Date Published:
- Journal Name:
- Frontiers in Earth Science
- Volume:
- 9
- ISSN:
- 2296-6463
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Bituminous limestone of the Ediacaran Shibantan Member of the Dengying Formation (551–539 Ma) in the Yangtze Gorges area contains a rare carbonate-hosted Ediacara-type macrofossil assemblage. This assemblage is dominated by the tubular fossil Wutubus Chen et al., 2014 and discoidal fossils, e.g., Hiemalora Fedonkin, 1982 and Aspidella Billings, 1872, but frondose organisms such as Charnia Ford, 1958, Rangea Gürich, 1929, and Arborea Glaessner and Wade, 1966 are also present. Herein, we report four species of Arborea from the Shibantan assemblage, including the type species Arborea arborea (Glaessner in Glaessner and Daily, 1959) Glaessner and Wade, 1966, Arborea denticulata new species, and two unnamed species, Arborea sp. A and Arborea sp. B. Arborea arborea is the most abundant frond in the Shibantan assemblage. Arborea denticulata n. sp. resembles Arborea arborea in general morphology but differs in its fewer primary branches and lower length/width ratio of primary branches. Arborea sp. A and Arborea sp. B are fronds with a Hiemalora -type basal attachment. Sealing by microbial mats and authigenic cementation may have played an important role in the preservation of Arborea in the Shibantan assemblage. The Shibantan material of Arborea extends the stratigraphic, ecological, and taphonomic ranges of this genus. UUID: http://zoobank.org/554f21da-5f09-4891-9deb-cbc00c41e5f1more » « less
-
Abstract Sedimentary rocks of the Itararé Group, deposited during the Late Paleozoic Ice Age in the Paraná Basin of South America, were collected throughout the state of São Paulo, Brazil, for an anisotropy of magnetic susceptibility (AMS) and rock‐magnetic study. A recent paleomagnetic study conducted on the same samples had determined that these rocks were largely remagnetized during the Cretaceous; however, rock‐magnetic experiments demonstrate that the AMS is dominantly carried by paramagnetic minerals and therefore is unaffected by the secondary magnetic overprints. AMS data are analyzed in terms of their shape and orientation, and according to the relationship between theq‐value (magnetic lineation/foliation) and the imbrication angle (β) of the minimum susceptibility axes with respect to bedding (q–βdiagram). Using multiple lines of evidence, we demonstrate that AMS records primary sedimentary fabrics that reflect the depositional environments and paleocurrent conditions in which these rocks were deposited. The magnetic fabrics consistently record a SE‐NW paleocurrent orientation, with dominant direction of transport to the NW throughout the entire state of São Paulo, in agreement with ice flow and sediment transport directions reported from limited numbers of sites possessing sedimentary structures and ice‐kinematic indicators.more » « less
-
Abstract Due to historical under‐sampling of the deep ocean, the distributional ranges of mesopelagic zooplankton are not well documented, leading to uncertainty about the mechanisms that shape midwater zooplankton community composition. Using a combination of DNA metabarcoding (18S‐V4 and mtCOI) and trait‐based analysis, we characterized zooplankton diversity and community composition in the upper 1000 m of the northeast Pacific Ocean. We tested whether the North Pacific Transition Zone is a biogeographic boundary region for mesopelagic zooplankton. We also tested whether zooplankton taxa occupying different vertical habitats and exhibiting different ecological traits differed in the ranges of temperature, Chl‐a, and dissolved oxygen conditions inhabited. The depth of the maximum taxonomic richness deepened with increasing latitude in the North Pacific. Community similarity in the mesopelagic zone also increased in comparison with the epipelagic zone, and no evidence was found for a biogeographic boundary between previously delineated mesopelagic biogeochemical provinces. Epipelagic zooplankton exhibited broader temperature and Chl‐aranges than mesopelagic taxa. Within the epipelagic, taxa with broader temperature and Chl‐aranges also had broader distributional ranges. However, mesopelagic taxa were distributed across wider dissolved oxygen ranges, and within the mesopelagic, only oxygen ranges covaried with distributional ranges. Environmental and distributional ranges also varied among traits, both for epipelagic taxa and mesopelagic taxa. The strongest differences in both environmental and distributional ranges were observed for taxa with or without diel vertical migration behavior. Our results suggest that species traits can influence the differential effects of physical dispersal and environmental selection in shaping biogeographic distributions.more » « less
-
Rebuilding Earth’s first skeletal animals: the original morphology of Corumbella (Ediacaran, Brazil)The evolutionary onset of animal biomineralization in the late Ediacaran (ca555–538 Ma) is marked by the global appearance of enigmatic tubular fossils with unresolved phylogenetic relationships. Among these,Corumbella wernerifrom the Tamengo Formation (Corumbá Group, Brazil) has been variously interpreted as affiliated with cnidarians or bilaterians. Using synchrotron imaging and machine learning, we analysed new specimens ofC. wernerito reconstruct their original skeletal organization. Our findings reveal thatCorumbella’s tubes were originally conico-cylindrical. Large individuals ofCorumbella, including less compacted specimens, and compression experiments with modern annelid tubes all indicate that previous reconstructions of a quadrate outline and midline features were misled by taphonomic artefacts. We also show that the wall ofCorumbellais composed of a single layer of ring-shaped elements. Unlike the fourfold symmetry of scyphozoans or the complex cataphract-like structures of Cambrian bilaterians (e.g. halkieriids, tommotiids and wiwaxiids),Corumbelladisplays structural similarities with other late Ediacaran corumbellomorphs, such asCostatubus. These taxa exhibit a distinctive barrel-on-barrel tube construction, with modular elements stacked on each other rather than nested. Our findings redefineCorumbella’s morphology and phylogenetic affinities, contributing to a broader understanding of early biomineralizing metazoans and their ecological roles in the Ediacaran biosphere.more » « less
An official website of the United States government

