skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Black hole in discrete gravity
Abstract We study the metric corresponding to a three-dimensional coset spaceSO(4)/SO(3) in the lattice setting. With the use of three integers$$n_1, n_2$$ n 1 , n 2 , and$$n_3$$ n 3 , and a length scale,$$l_{\mu }$$ l μ , the continuous metric is transformed into a discrete space. The numerical outcomes are compared with the continuous ones. The singularity of the black hole is explored and different domains are studied.  more » « less
Award ID(s):
2207663
PAR ID:
10496076
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
The European Physical Journal C
Volume:
84
Issue:
3
ISSN:
1434-6052
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We study numerically the curvature tensor in a three-dimensional discrete space. Starting from the continuous metric of a three-sphere, we transformed it into a discrete space using three integers$$n_1, n_2$$ n 1 , n 2 , and$$n_3$$ n 3 . The numerical results are compared with the expected values in the continuous limit. We show that as the number of cells in the lattice increases, the continuous limit is recovered. 
    more » « less
  2. Abstract LetXbe ann-element point set in thek-dimensional unit cube$$[0,1]^k$$ [ 0 , 1 ] k where$$k \ge 2$$ k 2 . According to an old result of Bollobás and Meir (Oper Res Lett 11:19–21, 1992) , there exists a cycle (tour)$$x_1, x_2, \ldots , x_n$$ x 1 , x 2 , , x n through thenpoints, such that$$\left( \sum _{i=1}^n |x_i - x_{i+1}|^k \right) ^{1/k} \le c_k$$ i = 1 n | x i - x i + 1 | k 1 / k c k , where$$|x-y|$$ | x - y | is the Euclidean distance betweenxandy, and$$c_k$$ c k is an absolute constant that depends only onk, where$$x_{n+1} \equiv x_1$$ x n + 1 x 1 . From the other direction, for every$$k \ge 2$$ k 2 and$$n \ge 2$$ n 2 , there existnpoints in$$[0,1]^k$$ [ 0 , 1 ] k , such that their shortest tour satisfies$$\left( \sum _{i=1}^n |x_i - x_{i+1}|^k \right) ^{1/k} = 2^{1/k} \cdot \sqrt{k}$$ i = 1 n | x i - x i + 1 | k 1 / k = 2 1 / k · k . For the plane, the best constant is$$c_2=2$$ c 2 = 2 and this is the only exact value known. Bollobás and Meir showed that one can take$$c_k = 9 \left( \frac{2}{3} \right) ^{1/k} \cdot \sqrt{k}$$ c k = 9 2 3 1 / k · k for every$$k \ge 3$$ k 3 and conjectured that the best constant is$$c_k = 2^{1/k} \cdot \sqrt{k}$$ c k = 2 1 / k · k , for every$$k \ge 2$$ k 2 . Here we significantly improve the upper bound and show that one can take$$c_k = 3 \sqrt{5} \left( \frac{2}{3} \right) ^{1/k} \cdot \sqrt{k}$$ c k = 3 5 2 3 1 / k · k or$$c_k = 2.91 \sqrt{k} \ (1+o_k(1))$$ c k = 2.91 k ( 1 + o k ( 1 ) ) . Our bounds are constructive. We also show that$$c_3 \ge 2^{7/6}$$ c 3 2 7 / 6 , which disproves the conjecture for$$k=3$$ k = 3 . Connections to matching problems, power assignment problems, related problems, including algorithms, are discussed in this context. A slightly revised version of the Bollobás–Meir conjecture is proposed. 
    more » « less
  3. Abstract LetXbe a compact normal complex space of dimensionnandLbe a holomorphic line bundle onX. Suppose that$$\Sigma =(\Sigma _1,\ldots ,\Sigma _\ell )$$ Σ = ( Σ 1 , , Σ ) is an$$\ell $$ -tuple of distinct irreducible proper analytic subsets ofX,$$\tau =(\tau _1,\ldots ,\tau _\ell )$$ τ = ( τ 1 , , τ ) is an$$\ell $$ -tuple of positive real numbers, and let$$H^0_0(X,L^p)$$ H 0 0 ( X , L p ) be the space of holomorphic sections of$$L^p:=L^{\otimes p}$$ L p : = L p that vanish to order at least$$\tau _jp$$ τ j p along$$\Sigma _j$$ Σ j ,$$1\le j\le \ell $$ 1 j . If$$Y\subset X$$ Y X is an irreducible analytic subset of dimensionm, we consider the space$$H^0_0 (X|Y, L^p)$$ H 0 0 ( X | Y , L p ) of holomorphic sections of$$L^p|_Y$$ L p | Y that extend to global holomorphic sections in$$H^0_0(X,L^p)$$ H 0 0 ( X , L p ) . Assuming that the triplet$$(L,\Sigma ,\tau )$$ ( L , Σ , τ ) is big in the sense that$$\dim H^0_0(X,L^p)\sim p^n$$ dim H 0 0 ( X , L p ) p n , we give a general condition onYto ensure that$$\dim H^0_0(X|Y,L^p)\sim p^m$$ dim H 0 0 ( X | Y , L p ) p m . WhenLis endowed with a continuous Hermitian metric, we show that the Fubini-Study currents of the spaces$$H^0_0(X|Y,L^p)$$ H 0 0 ( X | Y , L p ) converge to a certain equilibrium current onY. We apply this to the study of the equidistribution of zeros inYof random holomorphic sections in$$H^0_0(X|Y,L^p)$$ H 0 0 ( X | Y , L p ) as$$p\rightarrow \infty $$ p
    more » « less
  4. Abstract We introduce partitioned matching games as a suitable model for international kidney exchange programmes, where in each round the total number of available kidney transplants needs to be distributed amongst the participating countries in a “fair” way. A partitioned matching game (N, v) is defined on a graph$$G=(V,E)$$ G = ( V , E ) with an edge weightingwand a partition$$V=V_1 \cup \dots \cup V_n$$ V = V 1 V n . The player set is$$N = \{ 1, \dots , n\}$$ N = { 1 , , n } , and player$$p \in N$$ p N owns the vertices in$$V_p$$ V p . The valuev(S) of a coalition $$S \subseteq N$$ S N is the maximum weight of a matching in the subgraph ofGinduced by the vertices owned by the players in S. If$$|V_p|=1$$ | V p | = 1 for all$$p\in N$$ p N , then we obtain the classical matching game. Let$$c=\max \{|V_p| \; |\; 1\le p\le n\}$$ c = max { | V p | | 1 p n } be the width of (N, v). We prove that checking core non-emptiness is polynomial-time solvable if$$c\le 2$$ c 2 but co--hard if$$c\le 3$$ c 3 . We do this via pinpointing a relationship with the known class ofb-matching games and completing the complexity classification on testing core non-emptiness forb-matching games. With respect to our application, we prove a number of complexity results on choosing, out of possibly many optimal solutions, one that leads to a kidney transplant distribution that is as close as possible to some prescribed fair distribution. 
    more » « less
  5. Abstract Given a prime powerqand$$n \gg 1$$ n 1 , we prove that every integer in a large subinterval of the Hasse–Weil interval$$[(\sqrt{q}-1)^{2n},(\sqrt{q}+1)^{2n}]$$ [ ( q - 1 ) 2 n , ( q + 1 ) 2 n ] is$$\#A({\mathbb {F}}_q)$$ # A ( F q ) for some ordinary geometrically simple principally polarized abelian varietyAof dimensionnover$${\mathbb {F}}_q$$ F q . As a consequence, we generalize a result of Howe and Kedlaya for$${\mathbb {F}}_2$$ F 2 to show that for each prime powerq, every sufficiently large positive integer is realizable, i.e.,$$\#A({\mathbb {F}}_q)$$ # A ( F q ) for some abelian varietyAover$${\mathbb {F}}_q$$ F q . Our result also improves upon the best known constructions of sequences of simple abelian varieties with point counts towards the extremes of the Hasse–Weil interval. A separate argument determines, for fixedn, the largest subinterval of the Hasse–Weil interval consisting of realizable integers, asymptotically as$$q \rightarrow \infty $$ q ; this gives an asymptotically optimal improvement of a 1998 theorem of DiPippo and Howe. Our methods are effective: We prove that if$$q \le 5$$ q 5 , then every positive integer is realizable, and for arbitraryq, every positive integer$$\ge q^{3 \sqrt{q} \log q}$$ q 3 q log q is realizable. 
    more » « less