skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Act3D: 3D Feature Field Transformers for Multi-Task Robotic Manipulation
3D perceptual representations are well suited for robot manipulation as they easily encode occlusions and simplify spatial reasoning. Many manipulation tasks require high spatial precision in end-effector pose prediction, which typically demands high-resolution 3D feature grids that are computationally expensive to process. As a result, most manipulation policies operate directly in 2D, foregoing 3D inductive biases. In this paper, we introduce Act3D, a manipulation policy transformer that represents the robot’s workspace using a 3D feature field with adaptive resolutions dependent on the task at hand. The model lifts 2D pre-trained features to 3D using sensed depth, and attends to them to compute features for sampled 3D points. It samples 3D point grids in a coarse to fine manner, featurizes them using relative-position attention, and selects where to focus the next round of point sampling. In this way, it efficiently computes 3D action maps of high spatial resolution. Act3D sets a new state-of-the-art in RLBench, an established manipulation benchmark, where it achieves 10% absolute improvement over the previous SOTA 2D multi-view policy on 74 RLBench tasks and 22% absolute improvement with 3x less compute over the previous SOTA 3D policy. We quantify the importance of relative spatial attention, large-scale vision-language pre-trained 2D backbones, and weight tying across coarse-to-fine attentions in ablative experiments. Code and videos are available at our project site: https://act3d.github.io/.  more » « less
Award ID(s):
1849287
PAR ID:
10496086
Author(s) / Creator(s):
Publisher / Repository:
Proceedings of Machine Learning Research
Date Published:
Journal Name:
Conference on Robot Learning
ISSN:
2640-3498
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. 3D object recognition accuracy can be improved by learning the multi-scale spatial features from 3D spatial geometric representations of objects such as point clouds, 3D models, surfaces, and RGB-D data. Current deep learning approaches learn such features either using structured data representations (voxel grids and octrees) or from unstructured representations (graphs and point clouds). Learning features from such structured representations is limited by the restriction on resolution and tree depth while unstructured representations creates a challenge due to non-uniformity among data samples. In this paper, we propose an end-to-end multi-level learning approach on a multi-level voxel grid to overcome these drawbacks. To demonstrate the utility of the proposed multi-level learning, we use a multi-level voxel representation of 3D objects to perform object recognition. The multi-level voxel representation consists of a coarse voxel grid that contains volumetric information of the 3D object. In addition, each voxel in the coarse grid that contains a portion of the object boundary is subdivided into multiple fine-level voxel grids. The performance of our multi-level learning algorithm for object recognition is comparable to dense voxel representations while using significantly lower memory. 
    more » « less
  2. Collecting large-scale medical datasets with fully annotated samples for training of deep networks is prohibitively expensive, especially for 3D volume data. Recent breakthroughs in self-supervised learning (SSL) offer the ability to overcome the lack of labeled training samples by learning feature representations from unlabeled data. However, most current SSL techniques in the medical field have been designed for either 2D images or 3D volumes. In practice, this restricts the capability to fully leverage unlabeled data from numerous sources, which may include both 2D and 3D data. Additionally, the use of these pre-trained networks is constrained to downstream tasks with compatible data dimensions.In this paper, we propose a novel framework for unsupervised joint learning on 2D and 3D data modalities. Given a set of 2D images or 2D slices extracted from 3D volumes, we construct an SSL task based on a 2D contrastive clustering problem for distinct classes. The 3D volumes are exploited by computing vectored embedding at each slice and then assembling a holistic feature through deformable self-attention mechanisms in Transformer, allowing incorporating long-range dependencies between slices inside 3D volumes. These holistic features are further utilized to define a novel 3D clustering agreement-based SSL task and masking embedding prediction inspired by pre-trained language models. Experiments on downstream tasks, such as 3D brain segmentation, lung nodule detection, 3D heart structures segmentation, and abnormal chest X-ray detection, demonstrate the effectiveness of our joint 2D and 3D SSL approach. We improve plain 2D Deep-ClusterV2 and SwAV by a significant margin and also surpass various modern 2D and 3D SSL approaches. 
    more » « less
  3. This paper presents Multi-View Attentive Contextualization (MvACon), a simple yet effective method for improving 2D- to-3D feature lifting in query-based multi-view 3D (MV3D) object detection. Despite remarkable progress witnessed in the field of query-based MV3D object detection, prior art often suffers from either the lack of exploiting high- resolution 2D features in dense attention-based lifting, due to high computational costs, or from insufficiently dense grounding of 3D queries to multi-scale 2D features in sparse attention-based lifting. Our proposed MvACon hits the two birds with one stone using a representationally dense yet computationally sparse attentive feature contextualization scheme that is agnostic to specific 2D-to-3D feature lifting approaches. In experiments, the proposed MvACon is thoroughly tested on the nuScenes benchmark, using both the BEVFormer and its recent 3D deformable attention (DFA3D) variant, as well as the PETR, showing consistent detection performance improvement, especially in enhancing performance in location, orientation, and velocity prediction. It is also tested on the Waymo-mini benchmark using BEVFormer with similar improvement. We qualitatively and quantitatively show that global cluster-based contexts effectively encode dense scene-level contexts for MV3D object detection. The promising results of our proposed MvACon reinforces the adage in computer vision – “(contextualized) feature matters”. 
    more » « less
  4. We present iSeg, a new interactive technique for segmenting 3D shapes. Previous works have focused mainly on leveraging pre-trained 2D foundation models for 3D segmentation based on text. However, text may be insufficient for accurately describing fine-grained spatial segmentations. Moreover, achieving a consistent 3D segmentation using a 2D model is highly challenging, since occluded areas of the same semantic region may not be visible together from any 2D view. Thus, we design a segmentation method conditioned on fine user clicks, which operates entirely in 3D. Our system accepts user clicks directly on the shape's surface, indicating the inclusion or exclusion of regions from the desired shape partition. To accommodate various click settings, we propose a novel interactive attention module capable of processing different numbers and types of clicks, enabling the training of a single unified interactive segmentation model. We apply iSeg to a myriad of shapes from different domains, demonstrating its versatility and faithfulness to the user's specifications. Our project page is at https://threedle.github.io/iSeg/. 
    more » « less
  5. Automated canopy stress classification for field crops has traditionally relied on single-perspective, two-dimensional (2D) photographs, usually obtained through top-view imaging using unmanned aerial vehicles (UAVs). However, this approach may fail to capture the full extent of plant stress symptoms, which can manifest throughout the canopy. Recent advancements in LiDAR technologies have enabled the acquisition of high-resolution 3D point cloud data for the entire canopy, offering new possibilities for more accurate plant stress identification and rating. This study explores the potential of leveraging 3D point cloud data for improved plant stress assessment. We utilized a dataset of RGB 3D point clouds of 700 soybean plants from a diversity panel exposed to iron deficiency chlorosis (IDC) stress. From this unique set of 700 canopies exhibiting varying levels of IDC, we extracted several representations, including (a) handcrafted IDC symptom-specific features, (b) canopy fingerprints, and (c) latent feature-based features. Subsequently, we trained several classification models to predict plant stress severity using these representations. We exhaustively investigated several stress representations and model combinations for the 3-D data. We also compared the performance of these classification models against similar models that are only trained using the associated top-view 2D RGB image for each plant. Among the feature-model combinations tested, the 3D canopy fingerprint features trained with a support vector machine yielded the best performance, achieving higher classification accuracy than the best-performing model based on 2D data built using convolutional neural networks. Our findings demonstrate the utility of color canopy fingerprinting and underscore the importance of considering 3D data to assess plant stress in agricultural applications. 
    more » « less