skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Statistical summaries of unlabelled evolutionary trees
Summary Rooted and ranked phylogenetic trees are mathematical objects that are useful in modelling hierarchical data and evolutionary relationships with applications to many fields such as evolutionary biology and genetic epidemiology. Bayesian phylogenetic inference usually explores the posterior distribution of trees via Markov chain Monte Carlo methods. However, assessing uncertainty and summarizing distributions remains challenging for these types of structures. While labelled phylogenetic trees have been extensively studied, relatively less literature exists for unlabelled trees that are increasingly useful, for example when one seeks to summarize samples of trees obtained with different methods, or from different samples and environments, and wishes to assess the stability and generalizability of these summaries. In our paper, we exploit recently proposed distance metrics of unlabelled ranked binary trees and unlabelled ranked genealogies, or trees equipped with branch lengths, to define the Fréchet mean, variance and interquartile sets as summaries of these tree distributions. We provide an efficient combinatorial optimization algorithm for computing the Fréchet mean of a sample or of distributions on unlabelled ranked tree shapes and unlabelled ranked genealogies. We show the applicability of our summary statistics for studying popular tree distributions and for comparing the SARS-CoV-2 evolutionary trees across different locations during the COVID-19 epidemic in 2020. Our current implementations are publicly available at https://github.com/RSamyak/fmatrix.  more » « less
Award ID(s):
2143242
PAR ID:
10496156
Author(s) / Creator(s):
;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Biometrika
Edition / Version:
1
Volume:
111
Issue:
1
ISSN:
0006-3444
Page Range / eLocation ID:
171-193
Subject(s) / Keyword(s):
Binary tree Combinatorial optimization Evolutionary tree Frechet mean Summarizing tree Unlabeled tree.
Format(s):
Medium: X Size: 1MB Other: pdf
Size(s):
1MB
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Understanding how evolutionary constraints shape the elevational distributions of tree lineages provides valuable insight into the future of tropical montane forests under global change. With narrow elevational ranges, high taxonomic turnover, frequent habitat specialization, and exceptional levels of endemism, tropical montane forests and trees are predicted to be highly sensitive to environmental change. Using plot census data from a gradient traversing > 3,000 m in elevation on the Amazonian flank of the Peruvian Andes, we employ phylogenetic approaches to assess the influence of evolutionary heritage on distribution trends of trees at the genus‐level. We find that closely related lineages tend to occur at similar mean elevations, with sister genera pairs occurring a mean 254 m in elevation closer to each other than the mean elevational difference between non‐sister genera pairs. We also demonstrate phylogenetic clustering both above and below 1,750 m a.s.l, corresponding roughly to the cloud‐base ecotone. Belying these general trends, some lineages occur across many different elevations. However, these highly plastic lineages are not phylogenetically clustered. Overall, our findings suggest that tropical montane forests are home to unique tree lineage diversity, constrained by their evolutionary heritage and vulnerable to substantial losses under environmental changes, such as rising temperatures or an upward shift of the cloud‐base. 
    more » « less
  2. Coalescent methods are proven and powerful tools for population genetics, phylogenetics, epidemiology, and other fields. A promising avenue for the analysis of large genomic alignments, which are increasingly common, is coalescent hidden Markov model (coalHMM) methods, but these methods have lacked general usability and flexibility. We introduce a novel method for automatically learning a coalHMM and inferring the posterior distributions of evolutionary parameters using black-box variational inference, with the transition rates between local genealogies derived empirically by simulation. This derivation enables our method to work directly with three or four taxa and through a divide-and-conquer approach with more taxa. Using a simulated data set resembling a human–chimp–gorilla scenario, we show that our method has comparable or better accuracy to previous coalHMM methods. Both species divergence times and population sizes were accurately inferred. The method also infers local genealogies, and we report on their accuracy. Furthermore, we discuss a potential direction for scaling the method to larger data sets through a divide-and-conquer approach. This accuracy means our method is useful now, and by deriving transition rates by simulation, it is flexible enough to enable future implementations of various population models. 
    more » « less
  3. Several algorithms build on the perfect phylogeny model to infer evolutionary trees. This problem is particularly hard when evolutionary trees are inferred from the fraction of genomes that have mutations in different positions, across different samples. Existing algorithms might do extensive searches over the space of possible trees. At the center of these algorithms is a projection problem that assigns a fitness cost to phylogenetic trees. In order to perform a wide search over the space of the trees, it is critical to solve this projection problem fast. In this paper, we use Moreau's decomposition for proximal operators, and a tree reduction scheme, to develop a new algorithm to compute this projection. Our algorithm terminates with an exact solution in a finite number of steps, and is extremely fast. In particular, it can search over all evolutionary trees with fewer than 11 nodes, a size relevant for several biological problems (more than 2 billion trees) in about 2 hours. 
    more » « less
  4. Polyploidy, or whole-genome duplication, is expected to confound the inference of species trees with phyloge- netic methods for two reasons. First, the presence of retained duplicated genes requires the reconciliation of the inferred gene trees to a proposed species tree. Second, even if the analyses are restricted to shared single copy genes, the occurrence of reciprocal gene loss, where the surviving genes in different species are paralogs from the polyploidy rather than orthologs, will mean that such genes will not have evolved under the corresponding species tree and may not produce gene trees that allow inference of that species tree. Here we analyze three different ancient polyploidy events, using synteny-based inferences of orthology and paralogy to infer gene trees from nearly 17,000 sets of homologous genes. We find that the simple use of single copy genes from polyploid organisms provides reasonably robust phylogenetic signals, despite the presence of reciprocal gene losses. Such gene trees are also most often in accord with the inferred species relationships inferred from maximum likelihood models of gene loss after polyploidy: a completely distinct phylogenetic signal present in these genomes. As seen in other studies, however, we find that methods for inferring phylogenetic confidence yield high support values even in cases where the underlying data suggest meaningful conflict in the phylogenetic signals. 
    more » « less
  5. Abstract MotivationThe acquisition of somatic mutations by a tumor can be modeled by a type of evolutionary tree. However, it is impossible to observe this tree directly. Instead, numerous algorithms have been developed to infer such a tree from different types of sequencing data. But such methods can produce conflicting trees for the same patient, making it desirable to have approaches that can combine several such tumor trees into a consensus or summary tree. We introduce The Weighted m-Tumor Tree Consensus Problem (W-m-TTCP) to find a consensus tree among multiple plausible tumor evolutionary histories, each assigned a confidence weight, given a specific distance measure between tumor trees. We present an algorithm called TuELiP that is based on integer linear programming which solves the W-m-TTCP, and unlike other existing consensus methods, allows the input trees to be weighted differently. ResultsOn simulated data we show that TuELiP outperforms two existing methods at correctly identifying the true underlying tree used to create the simulations. We also show that the incorporation of weights can lead to more accurate tree inference. On a Triple-Negative Breast Cancer dataset, we show that including confidence weights can have important impacts on the consensus tree identified. AvailabilityAn implementation of TuELiP and simulated datasets are available at https://bitbucket.org/oesperlab/consensus-ilp/src/main/. 
    more » « less