skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: MASH Native: a unified solution for native top-down proteomics data processing
Abstract MotivationNative top-down proteomics (nTDP) integrates native mass spectrometry (nMS) with top-down proteomics (TDP) to provide comprehensive analysis of protein complexes together with proteoform identification and characterization. Despite significant advances in nMS and TDP software developments, a unified and user-friendly software package for analysis of nTDP data remains lacking. ResultsWe have developed MASH Native to provide a unified solution for nTDP to process complex datasets with database searching capabilities in a user-friendly interface. MASH Native supports various data formats and incorporates multiple options for deconvolution, database searching, and spectral summing to provide a “one-stop shop” for characterizing both native protein complexes and proteoforms. Availability and implementationThe MASH Native app, video tutorials, written tutorials, and additional documentation are freely available for download at https://labs.wisc.edu/gelab/MASH_Explorer/MASHSoftware.php. All data files shown in user tutorials are included with the MASH Native software in the download .zip file.  more » « less
Award ID(s):
1845230
PAR ID:
10496214
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Editor(s):
Kelso, Janet
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Bioinformatics
Volume:
39
Issue:
6
ISSN:
1367-4811
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Native proteomics measures endogenous proteoforms and protein complexes under a near physiological condition using native mass spectrometry (nMS) coupled with liquid‐phase separations. Native proteomics should provide the most accurate bird's‐eye view of proteome dynamics within cells, which is fundamental for understanding almost all biological processes. nMS has been widely employed to characterize well‐purified protein complexes. However, there are only very few trials of utilizing nMS to measure proteoforms and protein complexes in a complex sample (i.e., a whole cell lysate). Here, we pioneer the native proteomics measurement of large proteoforms or protein complexes up to 400 kDa from a complex proteome via online coupling of native capillary zone electrophoresis (nCZE) to an ultra‐high mass range (UHMR) Orbitrap mass spectrometer. The nCZE‐MS technique enabled the measurement of a 115‐kDa standard protein complex while consuming only about 0.1 ng of protein material. nCZE‐MS analysis of anE.colicell lysate detected 72 proteoforms or protein complexes in a mass range of 30–400 kDa in a single run while consuming only 50‐ng protein material. The mass distribution of detected proteoforms or protein complexes agreed well with that from mass photometry measurement. This work represents a technical breakthrough in native proteomics for measuring complex proteomes. 
    more » « less
  2. Multilevel proteomics aims to delineate proteins at the peptide (bottom-up proteomics), proteoform (top-down proteomics), and protein complex (native proteomics) levels. Capillary electrophoresis-mass spectrometry (CE-MS) can achieve highly efficient separation and highly sensitive detection of complex mixtures of peptides, proteoforms, and even protein complexes because of its substantial technical progress. CE-MS has become a valuable alternative to the routinely used liquid chromatography-mass spectrometry for multilevel proteomics. This review summarizes the most recent (2019-2021) advances of CE-MS for multilevel proteomics regarding technological progress and biological applications. We also provide brief perspectives on CE-MS for multilevel proteomics at the end, highlighting some future directions and potential challenges. 
    more » « less
  3. Abstract MotivationUbiquitination is widely involved in protein homeostasis and cell signaling. Ubiquitin E3 ligases are critical regulators of ubiquitination that recognize and recruit specific ubiquitination targets for the final rate-limiting step of ubiquitin transfer reactions. Understanding the ubiquitin E3 ligase activities will provide knowledge in the upstream regulator of the ubiquitination pathway and reveal potential mechanisms in biological processes and disease progression. Recent advances in mass spectrometry-based proteomics have enabled deep profiling of ubiquitylome in a quantitative manner. Yet, functional analysis of ubiquitylome dynamics and pathway activity remains challenging. ResultsHere, we developed a UbE3-APA, a computational algorithm and stand-alone python-based software for Ub E3 ligase Activity Profiling Analysis. Combining an integrated annotation database with statistical analysis, UbE3-APA identifies significantly activated or suppressed E3 ligases based on quantitative ubiquitylome proteomics datasets. Benchmarking the software with published quantitative ubiquitylome analysis confirms the genetic manipulation of SPOP enzyme activity through overexpression and mutation. Application of the algorithm in the re-analysis of a large cohort of ubiquitination proteomics study revealed the activation of PARKIN and the co-activation of other E3 ligases in mitochondria depolarization-induced mitophagy process. We further demonstrated the application of the algorithm in the DIA (data-independent acquisition)-based quantitative ubiquitylome analysis. Availability and implementationSource code and binaries are freely available for download at URL: https://github.com/Chenlab-UMN/Ub-E3-ligase-Activity-Profiling-Analysis, implemented in python and supported on Linux and MS Windows. Supplementary informationSupplementary data are available at Bioinformatics online. 
    more » « less
  4. Abstract SummaryNew advances in single-cell multi-omics experiments have allowed biologists to examine how various biological factors regulate processes in concert on the cellular level. However, measuring multiple cellular features for a single cell can be quite resource-intensive or impossible with the current technology. By using optimal transport (OT) to align cells and features across disparate datasets produced by separate assays, Single Cell alignment using Optimal Transport + (SCOT+), our unsupervised single-cell alignment software suite, allows biologists to align their data without the need for any correspondence. SCOT+ implements a generic optimal transport solution that can be reduced to multiple different previously studied OT optimization procedures including SCOT, SCOTv2, SCOOTR, and AGW for single cell, each of which provides state-of-the-art single-cell alignment performance. Outside of giving a unified framework to interact with prior formulations, the generality of SCOT+ optimization naturally gives rise to a new OT loss, Unbalanced Augmented Gromov-Wasserstein (UAGW), and a corresponding optimizer. With our user-friendly website and tutorials, this new package will help improve biological analyses by allowing for more accurate downstream analyses on multi-omics single-cell measurements. Implementation and AvailabilityOur algorithm is implemented in Pytorch and available on PyPI and GitHub (https://github.com/scotplus/scotplus). Additionally, we have many tutorials available in a separate GitHub repository (https://github.com/scotplus/book_source) and on our website (https://scotplus.github.io/). 
    more » « less
  5. Proteoforms, which arise from post-translational modifications, genetic polymorphisms and RNA splice variants, play a pivotal role as drivers in biology. Understanding proteoforms is essential to unravel the intricacies of biological systems and bridge the gap between genotypes and phenotypes. By analysing whole proteins without digestion, top-down proteomics (TDP) provides a holistic view of the proteome and can decipher protein function, uncover disease mechanisms and advance precision medicine. This Primer explores TDP, including the underlying principles, recent advances and an outlook on the future. The experimental section discusses instrumentation, sample preparation, intact protein separation, tandem mass spectrometry techniques and data collection. The results section looks at how to decipher raw data, visualize intact protein spectra and unravel data analysis. Additionally, proteoform identification, characterization and quantification are summarized, alongside approaches for statistical analysis. Various applications are described, including the human proteoform project and biomedical, biopharmaceutical and clinical sciences. These are complemented by discussions on measurement reproducibility, limitations and a forward-looking perspective that outlines areas where the field can advance, including potential future applications. 
    more » « less