Abstract We provide a complete local well-posedness theory inHsbased Sobolev spaces for the free boundary incompressible Euler equations with zero surface tension on a connected fluid domain. Our well-posedness theory includes: (i) Local well-posedness in the Hadamard sense, i.e., local existence, uniqueness, and the first proof of continuous dependence on the data, all in low regularity Sobolev spaces; (ii) Enhanced uniqueness: Our uniqueness result holds at the level of the Lipschitz norm of the velocity and the$$C^{1,\frac{1}{2}}$$regularity of the free surface; (iii) Stability bounds: We construct a nonlinear functional which measures, in a suitable sense, the distance between two solutions (even when defined on different domains) and we show that this distance is propagated by the flow; (iv) Energy estimates: We prove refined, essentially scale invariant energy estimates for solutions, relying on a newly constructed family of elliptic estimates; (v) Continuation criterion: We give the first proof of a sharp continuation criterion in the physically relevant pointwise norms, at the level of scaling. In essence, we show that solutions can be continued as long as the velocity is in$$L_T^1W^{1,\infty}$$and the free surface is in$$L_T^1C^{1,\frac{1}{2}}$$, which is at the same level as the Beale-Kato-Majda criterion for the boundaryless case; (vi) A novel proof of the construction of regular solutions. Our entire approach is in the Eulerian framework and can be adapted to work in more general fluid domains.
more »
« less
Well-posedness and regularity for a polyconvex energy
We prove the existence, uniqueness, and regularity of minimizers of a polyconvex functional in two and three dimensions, which corresponds to theH1-projection of measure-preserving maps. Our result introduces a new criteria on the uniqueness of the minimizer, based on the smallness of the lagrange multiplier. No estimate on the second derivatives of the pressure is needed to get a unique global minimizer. As an application, we construct a minimizing movement scheme to constructLr-solutions of the Navier–Stokes equation (NSE) for a short time interval.
more »
« less
- Award ID(s):
- 2154578
- PAR ID:
- 10496334
- Publisher / Repository:
- COCV ESAIM
- Date Published:
- Journal Name:
- ESAIM: Control, Optimisation and Calculus of Variations
- Volume:
- 29
- ISSN:
- 1292-8119
- Page Range / eLocation ID:
- 67
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Spectral independence is a recently developed framework for obtaining sharp bounds on the convergence time of the classical Glauber dynamics. This new framework has yielded optimalO(nlogn)sampling algorithms on bounded-degree graphs for a large class of problems throughout the so-called uniqueness regime, including, for example, the problems of sampling independent sets, matchings, and Ising-model configurations. Our main contribution is to relax the bounded-degree assumption that has so far been important in establishing and applying spectral independence. Previous methods for avoiding degree bounds rely on usingLp-norms to analyse contraction on graphs with bounded connective constant (Sinclair, Srivastava, and Yin, FOCS’13). The non-linearity ofLp-norms is an obstacle to applying these results to bound spectral independence. Our solution is to capture theLp-analysis recursively by amortising over the subtrees of the recurrence used to analyse contraction. Our method generalises previous analyses that applied only to bounded-degree graphs. As a main application of our techniques, we consider the random graphG (n, d/n), where the previously known algorithms run in timenO(logd) or applied only to larged. We refine these algorithmic bounds significantly, and develop fast nearly linear algorithms based on Glauber dynamics that apply to all constantd, throughout the uniqueness regime.more » « less
-
Abstract Our recent work on linear and affine dynamical systems has laid out a general framework for inferring the parameters of a differential equation model from a discrete set of data points collected from a system being modeled. It introduced a new class of inverse problems where qualitative information about the parameters and the associated dynamics of the system is determined for regions of the data space, rather than just for isolated experiments. Rigorous mathematical results have justified this approach and have identified common features that arise for certain classes of integrable models. In this work we present a thorough numerical investigation that shows that several of these core features extend to a paradigmatic linear-in-parameters model, the Lotka–Volterra (LV) system, which we consider in the conservative case as well as under the addition of terms that perturb the system away from this regime. A central construct for this analysis is a concise representation of parameter and dynamical features in the data space that we call thePn-diagram, which is particularly useful for visualization of the qualitative dependence of the system dynamics on data for low-dimensional (smalln) systems. Our work also exposes some new properties related to non-uniqueness that arise for these LV systems, with non-uniqueness manifesting as a multi-layered structure in the associatedP2-diagrams.more » « less
-
Abstract We construct the Neumann function in a 1-sided chord-arc domain (i.e., a uniform domain with an Ahlfors regular boundary), and establish size and Hölder continuity estimates up to the boundary. We then obtain a Kenig-Pipher type theorem, in whichLpsolvability of the Neumann problem is shown to yield solvability inLqfor 1 <q<p, and in the Hardy spaceH1, in 2-sided chord-arc domains, under suitable background hypotheses.more » « less
-
Pe'er, I. (Ed.)Minimizers are k-mer sampling schemes designed to generate sketches for large sequences that preserve sufficiently long matches between sequences. Despite their widespread application, learning an effective minimizer scheme with optimal sketch size is still an open question. Most work in this direction focuses on designing schemes that work well on expectation over random sequences, which have limited applicability to many practical tools. On the other hand, several methods have been proposed to construct minimizer schemes for a specific target sequence. These methods, however, require greedy approximations to solve an intractable discrete optimization problem on the permutation space of k-mer orderings. To address this challenge, we propose: (a) a reformulation of the combinatorial solution space using a deep neural network re-parameterization; and (b) a fully differentiable approximation of the discrete objective. We demonstrate that our framework, DEEPMINIMIZER, discovers minimizer schemes that significantly outperform state-of-the-art constructions on genomic sequences.more » « less
An official website of the United States government

