ABSTRACT For ak‐uniform hypergraph and a positive integer , the Ramsey number denotes the minimum such that every ‐vertex ‐free ‐uniform hypergraph contains an independent set of vertices. A hypergraph isslowly growingif there is an ordering of its edges such that for each . We prove that if is fixed and is any non‐k‐partite slowly growing ‐uniform hypergraph, then for ,In particular, we deduce that the off‐diagonal Ramsey number is of order , where is the triple system . This is the only 3‐uniform Berge triangle for which the polynomial power of its off‐diagonal Ramsey number was not previously known. Our constructions use pseudorandom graphs and hypergraph containers.
more »
« less
Allen–Cahn solutions with triple junction structure at infinity
Abstract We construct an entire solution to the elliptic systemwhere is a ‘triple‐well’ potential. This solution is a local minimizer of the associated energyin the sense that minimizes the energy on any compact set among competitors agreeing with outside that set. Furthermore, we show that along subsequences, the ‘blowdowns’ of given by approach a minimal triple junction as . Previous results had assumed various levels of symmetry for the potential and had not established local minimality, but here we make no such symmetry assumptions.
more »
« less
- Award ID(s):
- 2106516
- PAR ID:
- 10615412
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Communications on Pure and Applied Mathematics
- Volume:
- 77
- Issue:
- 11
- ISSN:
- 0010-3640
- Page Range / eLocation ID:
- 4163 to 4211
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract A celebrated conjecture of Tuza says that in any (finite) graph, the minimum size of a cover of triangles by edges is at most twice the maximum size of a set of edge‐disjoint triangles. Resolving a recent question of Bennett, Dudek, and Zerbib, we show that this is true for random graphs; more precisely:urn:x-wiley:rsa:media:rsa21057:rsa21057-math-0001more » « less
-
Abstract Let and be natural numbers greater or equal to 2. Let be a homogeneous polynomial in variables of degree with integer coefficients , where denotes the inner product, and denotes the Veronese embedding with . Consider a variety in , defined by . In this paper, we examine a set of integer vectors , defined bywhere is a nonsingular form in variables of degree with for some constant depending at most on and . Suppose has a nontrivial integer solution. We confirm that the proportion of integer vectors in , whose associated equation is everywhere locally soluble, converges to a constant as . Moreover, for each place of , if there exists a nonzero such that and the variety in admits a smooth ‐point, the constant is positive.more » « less
-
Abstract We study the problem of stability of the catenoid, which is an asymptotically flat rotationally symmetric minimal surface in Euclidean space, viewed as a stationary solution to the hyperbolic vanishing mean curvature equation in Minkowski space. The latter is a quasilinear wave equation that constitutes the hyperbolic counterpart of the minimal surface equation in Euclidean space. Our main result is the nonlinear asymptotic stability, modulo suitable translation and boost (i.e., modulation), of the$$n$$ -dimensional catenoid with respect to a codimension one set of initial data perturbations without any symmetry assumptions, for$$n \geq 5$$ . The modulation and the codimension one restriction on the data are necessary and optimal in view of the kernel and the unique simple eigenvalue, respectively, of the stability operator of the catenoid. In a broader context, this paper fits in the long tradition of studies of soliton stability problems. From this viewpoint, our aim here is to tackle some new issues that arise due to the quasilinear nature of the underlying hyperbolic equation. Ideas introduced in this paper include a new profile construction and modulation analysis to track the evolution of the translation and boost parameters of the stationary solution, a new scheme for proving integrated local energy decay for the perturbation in the quasilinear and modulation-theoretic context, and an adaptation of the vectorfield method in the presence of dynamic translations and boosts of the stationary solution.more » « less
-
Abstract We address a special case of a conjecture of M. Talagrand relating two notions of “threshold” for an increasing family of subsets of a finite setV. The full conjecture implies equivalence of the “Fractional Expectation‐Threshold Conjecture,” due to Talagrand and recently proved by the authors and B. Narayanan, and the (stronger) “Expectation‐Threshold Conjecture” of the second author and G. Kalai. The conjecture under discussion here says there is a fixedLsuch that if, for a given , admits withand(a.k.a. isweakly p‐small), then admits such a taking values in ( is‐small). Talagrand showed this when is supported on singletons and suggested, as a more challenging test case, proving it when is supported on pairs. The present work provides such a proof.more » « less
An official website of the United States government

