The sensitivity of urban canopy air temperature (
We analyzed the effects of crosslinking fraction and number of functional sites per hardener molecule on the stress recovery and topology of thermoset shape memory polymers (TSMPs) via coarse-grained molecular dynamics simulations. After systematically varying the quality of the crosslinked network by manipulating the number of unique epoxies reacted with each hardener, we found that two fingerprints correlate well with stress recovery of TSMPs. These fingerprints are the fraction of epoxy molecules connected to two distinct hardener molecules, and the fraction of molecules that are part of the largest or main network in the system. Their product can be used as a topological score (
- Award ID(s):
- 1946231
- PAR ID:
- 10496362
- Publisher / Repository:
- https://iopscience.iop.org/article/10.1088/1361-665X/acfa7d
- Date Published:
- Journal Name:
- Smart Materials and Structures
- Volume:
- 32
- Issue:
- 11
- ISSN:
- 0964-1726
- Page Range / eLocation ID:
- 115001
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract ) to anthropogenic heat flux ( ) is known to vary with space and time, but the key factors controlling such spatiotemporal variabilities remain elusive. To quantify the contributions of different physical processes to the magnitude and variability of (where represents a change), we develop a forcing-feedback framework based on the energy budget of air within the urban canopy layer and apply it to diagnosing simulated by the Community Land Model Urban over the contiguous United States (CONUS). In summer, the median is around 0.01 over the CONUS. Besides the direct effect of on , there are important feedbacks through changes in the surface temperature, the atmosphere–canopy air heat conductance ( ), and the surface–canopy air heat conductance. The positive and negative feedbacks nearly cancel each other out and is mostly controlled by the direct effect in summer. In winter, becomes stronger, with the median value increased by about 20% due to weakened negative feedback associated with . The spatial and temporal (both seasonal and diurnal) variability of as well as the nonlinear response of to are strongly related to the variability of , highlighting the importance of correctly parameterizing convective heat transfer in urban canopy models. -
Abstract The interplay between charge transfer and electronic disorder in transition-metal dichalcogenide multilayers gives rise to superconductive coupling driven by proximity enhancement, tunneling and superconducting fluctuations, of a yet unwieldy variety. Artificial spacer layers introduced with atomic precision change the density of states by charge transfer. Here, we tune the superconductive coupling between
monolayers from proximity-enhanced to tunneling-dominated. We correlate normal and superconducting properties in tailored multilayers with varying SnSe layer thickness ( ). From high-field magnetotransport the critical fields yield Ginzburg–Landau coherence lengths with an increase of cross-plane ( ), trending towards two-dimensional superconductivity for . We show cross-overs between three regimes: metallic with proximity-enhanced coupling ( ), disordered-metallic with intermediate coupling ( ) and insulating with Josephson tunneling ( ). Our results demonstrate that stacking metal mono- and dichalcogenides allows to convert a metal/superconductor into an insulator/superconductor system, prospecting the control of two-dimensional superconductivity in embedded layers. -
Abstract Objective .In vivo imaging assessments of skeletal muscle structure and function allow for longitudinal quantification of tissue health. Magnetic resonance elastography (MRE) non-invasively quantifies tissue mechanical properties, allowing for evaluation of skeletal muscle biomechanics in response to loading, creating a better understanding of muscle functional health.Approach . In this study, we analyze the anisotropic mechanical response of calf muscles using MRE with a transversely isotropic, nonlinear inversion algorithm (TI-NLI) to investigate the role of muscle fiber stiffening under load. We estimate anisotropic material parameters including fiber shear stiffness ( ), substrate shear stiffness ( ), shear anisotropy ( ), and tensile anisotropy ( ) of the gastrocnemius muscle in response to both passive and active tension.Main results . In passive tension, we found a significant increase in and with increasing muscle length. While in active tension, we observed increasing and decreasing and during active dorsiflexion and plantarflexion—indicating less anisotropy—with greater effects when the muscles act as agonist.Significance . The study demonstrates the ability of this anisotropic MRE method to capture the multifaceted mechanical response of skeletal muscle to tissue loading from muscle lengthening and contraction. -
Abstract Environmental seismic disturbances limit the sensitivity of LIGO gravitational wave detectors. Trains near the LIGO Livingston detector produce low frequency (0.5–
) ground noise that couples into the gravitational wave sensitive frequency band (10– ) through light reflected in mirrors and other surfaces. We investigate the effect of trains during the Advanced LIGO third observing run, and propose a method to search for narrow band seismic frequencies responsible for contributing to increases in scattered light. Through the use of the linear regression tool Lasso (least absolute shrinkage and selection operator) and glitch correlations, we identify the most common seismic frequencies that correlate with increases in detector noise as 0.6– , 1.7– , 1.8– , and 2.3– in the LIGO Livingston corner station. -
Abstract We report a measurement of the hyperfine-structure constants of the85Rb 4
state using two-photon optical spectroscopy of the 5 4 transition. The spectra are acquired by measuring the transmission of the low-power 795 nm lower-stage laser beam through a cold-atom sample as a function of laser frequency, with the frequency of the upper-stage, 1476 nm laser fixed. All 4 hyperfine components of the state are well-resolved in the experimental data. The dominant systematic is the light shift from the 1476 nm laser, which is addressed by extrapolating line positions measured for a set of 1476 nm laser powers to zero laser power. The analysis of our experimental data yields both the magnetic-dipole and electric-quadrupole constants for the85Rb 4 level, without using earlier hyperfine measurements of other atomic levels. The respective results, 7.419(35) MHz and 4.19(19) MHz, are discussed in context with previous works. Our investigation may be useful for optical atomic clocks for precision metrology and emerging atom-based quantum technologies, all-infrared excitation of Rb Rydberg levels, and molecular physics.