We present a Keck/MOSFIRE restoptical composite spectrum of 16 typical gravitationally lensed starforming dwarf galaxies at 1.7 ≲
The best upper limit for the electron electric dipole moment was recently set by the ACME collaboration. This experiment measures an electron spinprecession in a cold beam of ThO molecules in their metastable
 NSFPAR ID:
 10303201
 Publisher / Repository:
 IOP Publishing
 Date Published:
 Journal Name:
 New Journal of Physics
 Volume:
 22
 Issue:
 2
 ISSN:
 13672630
 Page Range / eLocation ID:
 Article No. 023013
 Format(s):
 Medium: X
 Sponsoring Org:
 National Science Foundation
More Like this

Abstract z ≲ 2.6 (z _{mean}= 2.30), all chosen independent of emissionline strength. These galaxies have a median stellar mass of and a median star formation rate of $\mathrm{log}{({M}_{*}/{M}_{\odot})}_{\mathrm{med}}={8.29}_{0.43}^{+0.51}$ . We measure the faint electrontemperaturesensitive [O ${\mathrm{S}\mathrm{F}\mathrm{R}}_{\mathrm{H}\alpha}^{\mathrm{m}\mathrm{e}\mathrm{d}}={2.25}_{1.26}^{+2.15}\phantom{\rule{0.25em}{0ex}}{M}_{\odot}\phantom{\rule{0.25em}{0ex}}{\mathrm{y}\mathrm{r}}^{1}$iii ]λ 4363 emission line at 2.5σ (4.1σ ) significance when considering a bootstrapped (statisticalonly) uncertainty spectrum. This yields a directmethod oxygen abundance of ( $12+\mathrm{log}{(\mathrm{O}/\mathrm{H})}_{\mathrm{direct}}={7.88}_{0.22}^{+0.25}$ ). We investigate the applicability at high ${0.15}_{0.06}^{+0.12}\phantom{\rule{0.33em}{0ex}}{Z}_{\odot}$z of locally calibrated oxygenbased strongline metallicity relations, finding that the local reference calibrations of Bian et al. best reproduce (≲0.12 dex) our composite metallicity at fixed strongline ratio. At fixedM _{*}, our composite is well represented by thez ∼ 2.3 directmethod stellar mass—gasphase metallicity relation (MZR) of Sanders et al. When comparing to predicted MZRs from the IllustrisTNG and FIRE simulations, having recalculated our stellar masses with more realistic nonparametric star formation histories , we find excellent agreement with the FIRE MZR. Our composite is consistent with no metallicity evolution, at fixed $(\mathrm{log}{({M}_{*}/{M}_{\odot})}_{\mathrm{med}}={8.92}_{0.22}^{+0.31})$M _{*}and SFR, of the locally defined fundamental metallicity relation. We measure the doublet ratio [Oii ]λ 3729/[Oii ]λ 3726 = 1.56 ± 0.32 (1.51 ± 0.12) and a corresponding electron density of ( ${n}_{e}={1}_{0}^{+215}\phantom{\rule{0.33em}{0ex}}{\mathrm{cm}}^{3}$ ) when considering the bootstrapped (statisticalonly) error spectrum. This result suggests that lowermass galaxies have lower densities than highermass galaxies at ${n}_{e}={1}_{0}^{+74}\phantom{\rule{0.33em}{0ex}}{\mathrm{cm}}^{3}$z ∼ 2. 
Abstract It remains unclear what mechanism is driving the evolution of protoplanetary disks. Direct detection of the main candidates, either turbulence driven by magnetorotational instabilities or magnetohydrodynamical disk winds, has proven difficult, leaving the time evolution of the disk size as one of the most promising observables able to differentiate between these two mechanisms. But to do so successfully, we need to understand what the observed gas disk size actually traces. We studied the relation between
R _{CO,90%}, the radius that encloses 90% of the^{12}CO flux, andR _{c}, the radius that encodes the physical disk size, in order to provide simple prescriptions for conversions between these two sizes. For an extensive grid of thermochemical models, we calculateR _{CO,90%}from synthetic observations and relate properties measured at this radius, such as the gas column density, to bulk disk properties, such asR _{c}and the disk massM _{disk}. We found an empirical correlation between the gas column density atR _{CO,90%}and disk mass: . Using this correlation we derive an analytical prescription of ${N}_{\mathrm{gas}}{({R}_{\mathrm{CO},90\%})\approx 3.73\phantom{\rule{0.50em}{0ex}}\times \phantom{\rule{0.50em}{0ex}}{10}^{21}({M}_{\mathrm{disk}}/{M}_{\odot})}^{0.34}\phantom{\rule{0.33em}{0ex}}{\mathrm{cm}}^{2}$R _{CO,90%}that only depends onR _{c}andM _{disk}. We deriveR _{c}for disks in Lupus, Upper Sco, Taurus, and the DSHARP sample, finding that disks in the older Upper Sco region are significantly smaller (〈R _{c}〉 = 4.8 au) than disks in the younger Lupus and Taurus regions (〈R _{c}〉 = 19.8 and 20.9 au, respectively). This temporal decrease inR _{c}goes against predictions of both viscous and winddriven evolution, but could be a sign of significant external photoevaporation truncating disks in Upper Sco. 
Abstract Cosmic reionization was the last major phase transition of hydrogen from neutral to highly ionized in the intergalactic medium (IGM). Current observations show that the IGM is significantly neutral at
z > 7 and largely ionized byz ∼ 5.5. However, most methods to measure the IGM neutral fraction are highly model dependent and are limited to when the volumeaveraged neutral fraction of the IGM is either relatively low ( ) or close to unity ( ${\overline{x}}_{\mathrm{H}\phantom{\rule{0.25em}{0ex}}\mathrm{I}}\lesssim {10}^{3}$ ). In particular, the neutral fraction evolution of the IGM at the critical redshift range of ${\overline{x}}_{\mathrm{H}\phantom{\rule{0.25em}{0ex}}\mathrm{I}}\sim 1$z = 6–7 is poorly constrained. We present new constraints on at ${\overline{x}}_{\mathrm{H}\phantom{\rule{0.25em}{0ex}}\mathrm{I}}$z ∼ 5.1–6.8 by analyzing deep optical spectra of 53 quasars at 5.73 <z < 7.09. We derive modelindependent upper limits on the neutral hydrogen fraction based on the fraction of “dark” pixels identified in the Lyα and Lyβ forests, without any assumptions on the IGM model or the intrinsic shape of the quasar continuum. They are the first modelindependent constraints on the IGM neutral hydrogen fraction atz ∼ 6.2–6.8 using quasar absorption measurements. Our results give upper limits of (1 ${\overline{x}}_{\mathrm{H}\phantom{\rule{0.25em}{0ex}}\mathrm{I}}(z=6.3)<0.79\pm 0.04$σ ), (1 ${\overline{x}}_{\mathrm{H}\phantom{\rule{0.25em}{0ex}}\mathrm{I}}(z=6.5)<0.87\pm 0.03$σ ), and (1 ${\overline{x}}_{\mathrm{H}\phantom{\rule{0.25em}{0ex}}\mathrm{I}}(z=6.7)<{0.94}_{0.09}^{+0.06}$σ ). The dark pixel fractions atz > 6.1 are consistent with the redshift evolution of the neutral fraction of the IGM derived from Planck 2018. 
Abstract State transitions in black hole Xray binaries are likely caused by gas evaporation from a thin accretion disk into a hot corona. We present a heightintegrated version of this process, which is suitable for analytical and numerical studies. With radius
r scaled to Schwarzschild units and coronal mass accretion rate to Eddington units, the results of the model are independent of black hole mass. State transitions should thus be similar in Xray binaries and an active galactic nucleus. The corona solution consists of two powerlaw segments separated at a break radius ${\stackrel{\u0307}{m}}_{c}$r _{b}∼ 10^{3}(α /0.3)^{−2}, whereα is the viscosity parameter. Gas evaporates from the disk to the corona forr >r _{b}, and condenses back forr <r _{b}. Atr _{b}, reaches its maximum, ${\stackrel{\u0307}{m}}_{c}$ . If at ${\stackrel{\u0307}{m}}_{c,\mathrm{max}}\approx 0.02\phantom{\rule{0.25em}{0ex}}{(\alpha /0.3)}^{3}$r ≫r _{b}the thin disk accretes with , then the disk evaporates fully before reaching ${\stackrel{\u0307}{m}}_{d}<{\stackrel{\u0307}{m}}_{c,\mathrm{max}}$r _{b}, giving the hard state. Otherwise, the disk survives at all radii, giving the thermal state. While the basic model considers only bremsstrahlung cooling and viscous heating, we also discuss a more realistic model that includes Compton cooling and direct coronal heating by energy transport from the disk. Solutions are again independent of black hole mass, andr _{b}remains unchanged. This model predicts strong coronal winds forr >r _{b}, and aT ∼ 5 × 10^{8}K Comptoncooled corona forr <r _{b}. Twotemperature effects are ignored, but may be important at small radii. 
Abstract We present a multiwavelength analysis of the galaxy cluster SPTCL J06074448 (SPT0607), which is one of the most distant clusters discovered by the South Pole Telescope at
z = 1.4010 ± 0.0028. The highredshift cluster shows clear signs of being relaxed with wellregulated feedback from the active galactic nucleus (AGN) in the brightest cluster galaxy (BCG). Using Chandra Xray data, we construct thermodynamic profiles and determine the properties of the intracluster medium. The coolcore nature of the cluster is supported by a centrally peaked density profile and low central entropy ( keV cm^{2}), which we estimate assuming an isothermal temperature profile due to the limited spectral information given the distance to the cluster. Using the density profile and gas cooling time inferred from the Xray data, we find a masscooling rate ${K}_{0}={18}_{9}^{+11}$ yr^{−1}. From optical spectroscopy and photometry around the [O ${\stackrel{\u0307}{M}}_{\mathrm{cool}}={100}_{60}^{+90}\phantom{\rule{0.25em}{0ex}}{M}_{\odot}$ii ] emission line, we estimate that the BCG star formation rate is yr^{−1}, roughly two orders of magnitude lower than the predicted masscooling rate. In addition, using ATCA radio data at 2.1 GHz, we measure a radio jet power ${\mathrm{SFR}}_{[\mathrm{O}\phantom{\rule{0.25em}{0ex}}\mathrm{II}]}={1.7}_{0.6}^{+1.0}\phantom{\rule{0.25em}{0ex}}{M}_{\odot}$ erg s^{−1}, which is consistent with the Xray cooling luminosity ( ${P}_{\mathrm{cav}}={3.2}_{1.3}^{+2.1}\times {10}^{44}$ erg s^{−1}within ${L}_{\mathrm{cool}}={1.9}_{0.5}^{+0.2}\times {10}^{44}$r _{cool}= 43 kpc). These findings suggest that SPT0607 is a relaxed, coolcore cluster with AGNregulated cooling at an epoch shortly after cluster formation, implying that the balance between cooling and feedback can be reached quickly. We discuss the implications for these findings on the evolution of AGN feedback in galaxy clusters.