skip to main content

Title: The metastable Q 3 Δ 2 state of ThO: a new resource for the ACME electron EDM search
Abstract

The best upper limit for the electron electric dipole moment was recently set by the ACME collaboration. This experiment measures an electron spin-precession in a cold beam of ThO molecules in their metastableH(3Δ1)state. Improvement in the statistical and systematic uncertainties is possible with more efficient use of molecules from the source and better magnetometry in the experiment, respectively. Here, we report measurements of several relevant properties of the long-livedQ(3Δ2)state of ThO, and show that this state is a very useful resource for both these purposes. TheQstate lifetime is long enough that its decay during the time of flight in the ACME beam experiment is negligible. The large electric dipole moment measured for theQstate, giving rise to a large linear Stark shift, is ideal for an electrostatic lens that increases the fraction of molecules detected downstream. The measured magnetic moment of theQstate is also large enough to be used as a sensitive co-magnetometer in ACME. Finally, we show that theQstate has a large transition dipole moment to theC(1Π1)state, which allows for efficient population transfer between the ground stateXmore » width='0.50em'/>(1Σ+)and theQstate viaXCQStimulated Raman Adiabatic Passage (STIRAP). We demonstrate 90 % STIRAP transfer efficiency. In the course of these measurements, we also determine the magnetic moment ofCstate, theXCtransition dipole moment, and branching ratios of decays from theCstate.

« less
Authors:
; ; ; ; ; ; ; ; ;
Award ID(s):
1734011 1912513
Publication Date:
NSF-PAR ID:
10303201
Journal Name:
New Journal of Physics
Volume:
22
Issue:
2
Page Range or eLocation-ID:
Article No. 023013
ISSN:
1367-2630
Publisher:
IOP Publishing
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We continue earlier efforts in computing the dimensions of tangent space cohomologies of Calabi–Yau manifolds using deep learning. In this paper, we consider the dataset of all Calabi–Yau four-folds constructed as complete intersections in products of projective spaces. Employing neural networks inspired by state-of-the-art computer vision architectures, we improve earlier benchmarks and demonstrate that all four non-trivial Hodge numbers can be learned at the same time using a multi-task architecture. With 30% (80%) training ratio, we reach an accuracy of 100% forh(1,1)and 97% forh(2,1)(100% for both), 81% (96%) formore »overflow='scroll'>h(3,1), and 49% (83%) forh(2,2). Assuming that the Euler number is known, as it is easy to compute, and taking into account the linear constraint arising from index computations, we get 100% total accuracy.

    « less
  2. Abstract

    The efficiency of thin-film solar cells with a Cu(In1xGax)Se2absorber is limited by nanoscopic inhomogeneities and defects. Traditional characterization methods are challenged by the multi-scale evaluation of the performance at defects that are buried in the device structures. Multi-modal x-ray microscopy offers a unique tool-set to probe the performance in fully assembled solar cells, and to correlate the performance with composition down to the micro- and nanoscale. We applied this approach to the mapping of temperature-dependent recombination for Cu(In1xGax)Se2solar cells with different absorber grain sizes, evaluating the same areas from room temperature to100more »width='0.25em'/>°C. It was found that poor performing areas in the large-grain sample are correlated with a Cu-deficient phase, whereas defects in the small-grain sample are not correlated with the distribution of Cu. In both samples, classes of recombination sites were identified, where defects were activated or annihilated by temperature. More generally, the methodology of combinedoperandoandin situx-ray microscopy was established at the physical limit of spatial resolution given by the device itself. As proof-of-principle, the measurement of nanoscopic current generation in a solar cell is demonstrated with applied bias voltage and bias light.

    « less
  3. Abstract

    We construct, for the first time, the time-domain gravitational wave strain waveform from the collapse of a strongly gravitating Abelian Higgs cosmic string loop in full general relativity. We show that the strain exhibits a large memory effect during merger, ending with a burst and the characteristic ringdown as a black hole is formed. Furthermore, we investigate the waveform and energy emitted as a function of string width, loop radius and string tension. We find that the mass normalized gravitational wave energy displays a strong dependence on the inverse of the string tensionEGW/M0∝ 1/, withEGW/M0O(1more »stretchy='false'>)%at the percent level, for the regime where≳ 10−3. Conversely, we show that the efficiency is only weakly dependent on the initial string width and initial loop radii. Using these results, we argue that gravitational wave production is dominated by kinematical instead of geometrical considerations.

    « less
  4. Abstract

    Time evolution of quantum systems has been shown to be one of the most difficult components of a typical undergraduate quantum mechanics course. In this work, we examine the current literature, and then take a closer look at the process that students use to determine how the quantum state of a spin-1/2 particle evolves with time. We divide the process of writing a time-dependent state into five elements and use these to both directly probe student understanding and guide our coding of student responses. We focus on three elements of this process, including knowledge of the Hamiltonian, the energymore »eigenstates and eigenvalues, and what basis should be used when writing the state as a function of time using the phaseeiEnt/. Analysis of four exam questions given at three institutions suggests that knowledge of the energy eigenbasis and its importance for time evolution may be a weak point in student understanding.

    « less
  5. Abstract

    Chiral and helical Majorana fermions are two archetypal edge excitations in two-dimensional topological superconductors. They emerge from systems of different Altland–Zirnbauer symmetries and characterized byZandZ2topological invariants respectively. It seems improbable to tune a pair of co-propagating chiral edge modes to counter-propagate in a single system without symmetry breaking. Here, we explore the peculiar behaviors of Majorana edge modes in topological superconductors with an additional ‘mirror’ symmetry which changes the bulk topological invariant toZZtype. A theoretical toy model describing the proximity structure of a Chern insulator andmore »apx-wave superconductor is proposed and solved analytically to illustrate a direct transition between two topologically nontrivial phases. The weak pairing phase has two chiral Majorana edge modes, while the strong pairing phase is characterized by mirror-graded Chern number and hosts a pair of counter-propagating Majorana fermions protected by the mirror symmetry. The edge theory is worked out in detail, and implications to braiding of Majorana fermions are discussed.

    « less