The iconic, palmately compound leaves of Here, we present a new method that overcomes the challenge of nonhomologous landmarks in palmate, pinnate, and lobed leaves, using We analyze 341 leaves from 24 individuals from nine Intra‐leaf modeling offers a rapid, cost‐effective means of identifying
This content will become publicly available on December 1, 2024
Mungbean (
- Award ID(s):
- 1954556
- NSF-PAR ID:
- 10496409
- Publisher / Repository:
- The Plant Phenome Journal
- Date Published:
- Journal Name:
- The Plant Phenome Journal
- Volume:
- 6
- Issue:
- 1
- ISSN:
- 2578-2703
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Summary Cannabis have attracted significant attention in the past. However, investigations into the genetic basis of leaf shape or its connections to phytochemical composition have yielded inconclusive results. This is partly due to prominent changes in leaflet number within a single plant during development, which has so far prevented the proper use of common morphometric techniques.Cannabis as an example. We model corresponding pseudo‐landmarks for each leaflet as angle‐radius coordinates and model them as a function of leaflet to create continuous polynomial models, bypassing the problems associated with variable number of leaflets between leaves.Cannabis accessions. Using 3591 pseudo‐landmarks in modeled leaves, we accurately predict accession identity, leaflet number, and relative node number.Cannabis accessions, making it a valuable tool for future taxonomic studies, cultivar recognition, and possibly chemical content analysis and sex identification, in addition to permitting the morphometric analysis of leaves in any species with variable numbers of leaflets or lobes. -
null (Ed.)Indirect defenses are plant phenotypes that reduce damage by attracting natural enemies of plant pests and pathogens to leaves. Despite their economic and ecological importance, few studies have investigated the genetic underpinnings of indirect defense phenotypes. Here, we present a genome-wide association study of five phenotypes previously determined to increase populations of beneficial (fungivorous and predacious) mites on grape leaves (genus Vitis): leaf bristles, leaf hairs, and the size, density, and depth of leaf domatia. Using a common garden genetic panel of 399 V. vinifera cultivars, we tested for genetic associations of these phenotypes using previously obtained genotyping data from the Vitis9kSNP array. We found one single nucleotide polymorphism (SNP) significantly associated with domatia density. This SNP (Chr5:1160194) is near two genes of interest: Importin Alpha Isoform 1 (VIT_205s0077g01440), involved in downy mildew resistance, and GATA Transcription Factor 8 (VIT_205s0077g01450), involved in leaf shape development. Our findings are among the first to examine the genomic regions associated with ecologically important plant traits that facilitate interactions with beneficial mites, and suggest promising candidate genes for breeding and genetic editing to increase naturally occurring predator-based defenses in grapevines.more » « less
-
Abstract Despite long‐standing theory for classifying plant ecological strategies, limited data directly link organismal traits to whole‐plant growth rates (GRs). We compared trait‐growth relationships based on three prominent theories: growth analysis, Grime's competitive–stress tolerant–ruderal (CSR) triangle, and the leaf economics spectrum (LES). Under these schemes, growth is hypothesized to be predicted by traits related to relative biomass investment, leaf structure, or gas exchange, respectively. We also considered traits not included in these theories but that might provide potential alternative best predictors of growth. In phylogenetic analyses of 30 diverse milkweeds (
Asclepias spp.) and 21 morphological and physiological traits, GR (total biomass produced per day) varied 50‐fold and was best predicted by biomass allocation to leaves (as predicted by growth analysis) and the CSR traits of leaf size and leaf dry matter content. Total leaf area (LA) and plant height were also excellent predictors of whole‐plant GRs. Despite two LES traits correlating with growth (mass‐based leaf nitrogen and area‐based leaf phosphorus contents), these were in the opposite direction of that predicted by LES, such that higher N and P contents corresponded to slower growth. The remaining LES traits (e.g., leaf gas exchange) were not predictive of plant GRs. Overall, differences in GR were driven more by whole‐plant characteristics such as biomass fractions and total LA than individual leaf‐level traits such as photosynthetic rate or specific leaf area. Our results are most consistent with classical growth analysis—combining leaf traits with whole‐plant allocation to best predict growth. However, given that destructive biomass measures are often not feasible, applying easy‐to‐measure leaf traits associated with the CSR classification appear more predictive of whole‐plant growth than LES traits. Testing the generality of this result across additional taxa would further improve our ability to predict whole‐plant growth from functional traits across scales. -
Abstract Tepary bean (
Phaseolus acutifolius A. Gray), indigenous to the arid climates of northern Mexico and the Southwest United States, diverged from common bean (Phaseolus vulgaris L.), approximately 2 million years ago and exhibits a wide range of resistance to biotic stressors. The tepary genome is highly syntenic to the common bean genome providing a foundation for discovery and breeding of agronomic traits between these two crop species. Although a limited number of adaptive traits from tepary bean have been introgressed into common bean, hybridization barriers between these two species required the development of bridging lines to alleviate this barrier. Thus, to fully utilize the extant tepary bean germplasm as both a crop and as a donor of adaptive traits, we developed a diversity panel of 422 cultivated, weedy, and wild tepary bean accessions which were then genotyped and phenotyped to enable population genetic analyses and genome‐wide association studies for their response to a range of biotic stressors. Population structure analyses of the panel revealed eight subpopulations and the differentiation of botanical varieties withinP. acutifolius . Genome‐wide association studies revealed loci and candidate genes underlying biotic stress resistance including quantitative trait loci for resistance to weevils, common bacterial blight, Fusarium wilt, and bean common mosaic necrosis virus that can be harnessed not only for tepary bean but also common bean improvement. -
Premise Leaf morphology is dynamic, continuously deforming during leaf expansion and among leaves within a shoot. Here, we measured the leaf morphology of more than 200 grapevines (
Vitis spp.) over four years and modeled changes in leaf shape along the shoot to determine whether a composite leaf shape comprising all the leaves from a single shoot can better capture the variation and predict species identity compared with individual leaves.Methods Using homologous universal landmarks found in grapevine leaves, we modeled various morphological features as polynomial functions of leaf nodes. The resulting functions were used to reconstruct modeled leaf shapes across the shoots, generating composite leaves that comprehensively capture the spectrum of leaf morphologies present.
Results We found that composite leaves are better predictors of species identity than individual leaves from the same plant. We were able to use composite leaves to predict the species identity of previously unassigned grapevines, which were verified with genotyping.
Discussion Observations of individual leaf shape fail to capture the true diversity between species. Composite leaf shape—an assemblage of modeled leaf snapshots across the shoot—is a better representation of the dynamic and essential shapes of leaves, in addition to serving as a better predictor of species identity than individual leaves.