skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: DSCOPE: A Cloud-Native Internet Telescope
Data from Internet telescopes that monitor routed but unused IP address space has been the basis for myriad insights on malicious, unwanted, and unexpected behavior. However, service migration to cloud infrastructure and the increasing scarcity of IPv4 address space present serious challenges to traditional Internet telescopes. This paper describes DSCOPE, a cloud-based Internet telescope designed to be scalable and interactive. We describe the design and implementation of DSCOPE, which includes two major components. Collectors are deployed on cloud VMs, interact with incoming connection requests, and capture pcap traces. The data processing pipeline organizes, transforms, and archives the pcaps from deployed collectors for post-facto analysis. In comparing a sampling of DSCOPE’s collected traffic with that of a traditional telescope, we see a striking difference in both the quantity and phenomena of behavior targeting cloud systems, with up to 450× as much cloud-targeting as expected under random scanning. We also show that DSCOPE’s adaptive approach achieves impressive price performance: optimal yield of scanners on a given IP address is achieved in under 8 minutes of observation. Our results demonstrate that cloud-based telescopes achieve a significantly broader and more comprehensive perspective than traditional techniques.  more » « less
Award ID(s):
2039146
PAR ID:
10496492
Author(s) / Creator(s):
; ;
Publisher / Repository:
USENIX Association
Date Published:
ISBN:
978-1-939133-37-3
Format(s):
Medium: X
Location:
Anaheim, CA
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Edge and fog computing encompass a variety of technologies that are poised to enable new applications across the Internet that support data capture, storage, processing, and communication across the networking continuum. These environments pose new challenges to the design and implementation of networks-as membership can be dynamic and devices are heterogeneous, widely distributed geographically, and in proximity to end-users, as is the case with mobile and Internet-of-Things (IoT) devices. We present a demonstration of EdgeVPN.io (Evio for short), an open-source programmable, software-defined network that addresses challenges in the deployment of virtual networks spanning distributed edge and cloud resources, in particular highlighting its use in support of the Kubernetes container orchestration middleware. The demo highlights a deployment of unmodified Kubernetes middleware across a virtual cluster comprising virtual machines deployed both in cloud providers, and in distinct networks at the edge-where all nodes are assigned private IP addresses and subject to different NAT (Network Address Translation) middleboxes, connected through an Evio virtual network. The demo includes an overview of the configuration of Kubernetes and Evio nodes and the deployment of Docker-based container pods, highlighting the seamless connectivity for TCP/IP applications deployed on the pods. 
    more » « less
  2. Because FPGAs outperform traditional processing cores like CPUs and GPUs in terms of performance per watt and flexibility, they are being used more and more in cloud and data center applications. There are growing worries about the security risks posed by multi-tenant sharing as the demand for hardware acceleration increases and gradually gives way to FPGA multi-tenancy in the cloud. The confidentiality, integrity, and availability of FPGA-accelerated applications may be compromised if space-shared FPGAs are made available to many cloud tenants. We propose a root of trust-based trusted execution mechanism called TrustToken to prevent harmful software-level attackers from getting unauthorized access and jeopardizing security. With safe key creation and truly random sources, TrustToken creates a security block that serves as the foundation of trust-based IP security. By offering crucial security characteristics, such as secure, isolated execution and trusted user interaction, TrustToken only permits trustworthy connection between the non-trusted third-party IP and the rest of the SoC environment. The suggested approach does this by connecting the third-party IP interface to the TrustToken Controller and running run-time checks on the correctness of the IP authorization(Token) signals. With an emphasis on software-based assaults targeting unauthorized access and information leakage, we offer a noble hardware/software architecture for trusted execution in FPGA-accelerated clouds and data centers. 
    more » « less
  3. IPv6's large address space allows ample freedom for choosing and assigning addresses. To improve client privacy and resist IP-based tracking, standardized techniques leverage this large address space, including privacy extensions and provider prefix rotation. Ephemeral and dynamic IPv6 addresses confound not only tracking and traffic correlation attempts, but also traditional network measurements, logging, and defense mechanisms. We show that the intended anti-tracking capability of these widely deployed mechanisms is unwittingly subverted by edge routers using legacy IPv6 addressing schemes that embed unique identifiers. We develop measurement techniques that exploit these legacy devices to make tracking such moving IPv6 clients feasible by combining intelligent search space reduction with modern high-speed active probing. Via an Internet-wide measurement campaign, we discover more than 9M affected edge routers and approximately 13k /48 prefixes employing prefix rotation in hundreds of ASes worldwide. We mount a six-week campaign to characterize the size and dynamics of these deployed IPv6 rotation pools, and demonstrate via a case study the ability to remotely track client address movements over time. We responsibly disclosed our findings to equipment manufacturers, at least one of which subsequently changed their default addressing logic. 
    more » « less
  4. Network Telescopes, often referred to as darknets, capture unsolicited traffic directed toward advertised but unused IP spaces, enabling researchers and operators to monitor malicious, Internet-wide network phenomena such as vulnerability scanning, botnet propagation, and DoS backscatter. Detecting these events, however,has become increasingly challenging due to the growing traffic volumes that telescopes receive. To address this, we introduce DarkSim,a novel analytic framework that utilizes Dynamic Time Warping to measure similarities within the high-dimensional time series of network traffic. DarkSim combines traditional raw packet processing with statistical approaches, identifying traffic anomalies and enabling rapid time-to-insight. We evaluate our framework against DarkGLASSO, an existing method based on the GraphicalLASSO algorithm, using data from the UCSD Network Telescope.Based on our manually classified detections, DarkSim showcased perfect precision and an overlap of up to 91% of DarkGLASSO’s detections in contrast to DarkGLASSO’s maximum of 73.3% precision and detection overlap of 37.5% with the former. We further demonstrate DarkSim’s capability to detect two real-world events in our case studies: (1) an increase in scanning activities surrounding CVE public disclosures, and (2) shifts in country and network-level scanning patterns that indicate aggressive scanning. DarkSim provides a detailed and interpretable analysis framework for time-series anomalies, representing a new contribution to network security analytics. 
    more » « less
  5. The rapid growth in technology and wide use of internet has increased smart applications such as intelligent transportation control system, and Internet of Things, which heavily rely on an efficient and reliable connectivity network. To overcome high bandwidth work load on the network, as well as minimize latency for real-time applications, the computation can be moved from the central cloud to a distributed edge cloud. The edge computing benefits various smart applications that uses distributed network for data analytics and services. Different from the existing cloud management solutions, edge computing needs to move cloud management services towards distributed heterogeneous edge nodes for multi-tenant user applications. However, existing cloud management services do not offer remote deployment of multi-tenant user applications on the cloud of edge nodes. In this paper, we propose a practical edge cloud software framework for deploying multi-tenant distributed smart applications. Having multiple distributed end nodes, auto discovery of all active end nodes is required for deploying multi-tenant user applications. However, existing cloud solutions require either private network or fixed IP address, which is not achievable for the distributed edge nodes. Most of the edge nodes connected through the public internet without fixed IP, and some of them even connect through IEEE 802.15 based sensor networks. We propose to build a software platform to manage the distributed edge nodes as well as support services to deploy and launch isolated, multi-tenant user applications through a lightweight container. We propose an architectural solution to remotely access edge cloud management services through intermittent internet connections. We open sourced our whole set of software solutions, and analyzed the major performance metrics of the edge cloud platform. 
    more » « less