Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Software security depends on coordinated vulnerability disclosure (CVD) from researchers, a process that the community has continually sought to measure and improve. Yet, CVD practices are only as effective as the data that informs them. In this paper, we use DScope, a cloud-based interactive Internet telescope, to build statistical models of vulnerability lifecycles, bridging the data gap in over 20 years of CVD research. By analyzing application-layer Internet scanning traffic over two years, we identify real-world exploitation timelines for 63 threats. We bring this data together with six additional datasets to build a complete birth-to-death model of these vulnerabilities, the most complete analysis of vulnerability lifecycles to date. Our analysis reaches three key recommendations: (1) CVD across diverse vendors shows lower effectiveness than previously thought, (2) intrusion detection systems are underutilized to provide protection for critical vulnerabilities, and (3) existing data sources of CVD can be augmented by novel approaches to Internet measurement. In this way, our vantage point offers new opportunities to improve the CVD process, achieving a safer software ecosystem in practice.more » « less
-
Data from Internet telescopes that monitor routed but unused IP address space has been the basis for myriad insights on malicious, unwanted, and unexpected behavior. However, service migration to cloud infrastructure and the increasing scarcity of IPv4 address space present serious challenges to traditional Internet telescopes. This paper describes DSCOPE, a cloud-based Internet telescope designed to be scalable and interactive. We describe the design and implementation of DSCOPE, which includes two major components. Collectors are deployed on cloud VMs, interact with incoming connection requests, and capture pcap traces. The data processing pipeline organizes, transforms, and archives the pcaps from deployed collectors for post-facto analysis. In comparing a sampling of DSCOPE’s collected traffic with that of a traditional telescope, we see a striking difference in both the quantity and phenomena of behavior targeting cloud systems, with up to 450× as much cloud-targeting as expected under random scanning. We also show that DSCOPE’s adaptive approach achieves impressive price performance: optimal yield of scanners on a given IP address is achieved in under 8 minutes of observation. Our results demonstrate that cloud-based telescopes achieve a significantly broader and more comprehensive perspective than traditional techniques.more » « less
-
As hyperscalers such as Google, Microsoft, and Amazon play an increasingly important role in today's Internet, they are also capable of manipulating probe packets that traverse their privately owned and operated backbones. As a result, standard traceroute-based measurement techniques are no longer a reliable means for assessing network connectivity in these global-scale cloud provider infrastructures. In response to these developments, we present a new empirical approach for elucidating connectivity in these private backbone networks. Our approach relies on using only lightweight (i.e., simple, easily interpretable, and readily available) measurements, but requires applying heavyweight mathematical techniques for analyzing these measurements. In particular, we describe a new method that uses network latency measurements and relies on concepts from Riemannian geometry (i.e., Ricci curvature) to assess the characteristics of the connectivity fabric of a given network infrastructure. We complement this method with a visualization tool that generates a novel manifold view of a network's delay space. We demonstrate our approach by utilizing latency measurements from available vantage points and virtual machines running in datacenters of three large cloud providers to study different aspects of connectivity in their private backbones and show how our generated manifold views enable us to expose and visualize critical aspects of this connectivity.more » « less
-
The main premise of this work is that since large cloud providers can and do manipulate probe packets that traverse their privately owned and operated backbones, standard traceroute-based measurement techniques are no longer a reliable means for assessing network connectivity in large cloud provider infrastructures. In response to these developments, we present a new empirical approach for elucidating private connectivity in today's Internet. Our approach relies on using only "light-weight" ( i.e., simple, easily-interpretable, and readily available) measurements, but requires applying a "heavy-weight" or advanced mathematical analysis. In particular, we describe a new method for assessing the characteristics of network path connectivity that is based on concepts from Riemannian geometry ( i.e., Ricci curvature) and also relies on an array of carefully crafted visualizations ( e.g., a novel manifold view of a network's delay space). We demonstrate our method by utilizing latency measurements from RIPE Atlas anchors and virtual machines running in data centers of three large cloud providers to (i) study different aspects of connectivity in their private backbones and (ii) show how our manifold-based view enables us to expose and visualize critical aspects of this connectivity over different geographic scales.more » « less
An official website of the United States government

Full Text Available