skip to main content


Title: Edge computing framework for distributed smart applications
The rapid growth in technology and wide use of internet has increased smart applications such as intelligent transportation control system, and Internet of Things, which heavily rely on an efficient and reliable connectivity network. To overcome high bandwidth work load on the network, as well as minimize latency for real-time applications, the computation can be moved from the central cloud to a distributed edge cloud. The edge computing benefits various smart applications that uses distributed network for data analytics and services. Different from the existing cloud management solutions, edge computing needs to move cloud management services towards distributed heterogeneous edge nodes for multi-tenant user applications. However, existing cloud management services do not offer remote deployment of multi-tenant user applications on the cloud of edge nodes. In this paper, we propose a practical edge cloud software framework for deploying multi-tenant distributed smart applications. Having multiple distributed end nodes, auto discovery of all active end nodes is required for deploying multi-tenant user applications. However, existing cloud solutions require either private network or fixed IP address, which is not achievable for the distributed edge nodes. Most of the edge nodes connected through the public internet without fixed IP, and some of them even connect through IEEE 802.15 based sensor networks. We propose to build a software platform to manage the distributed edge nodes as well as support services to deploy and launch isolated, multi-tenant user applications through a lightweight container. We propose an architectural solution to remotely access edge cloud management services through intermittent internet connections. We open sourced our whole set of software solutions, and analyzed the major performance metrics of the edge cloud platform.  more » « less
Award ID(s):
1637371
NSF-PAR ID:
10092488
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
The IEEE Smart World Congress 2017 (IEEE SWC 2017)
Page Range / eLocation ID:
1 to 8
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Edge application’s distributed nature presents significant challenges for developers in orchestrating and managing the multitenant applications. In this paper, we propose a practical edge cloud software framework for deploying multitenant distributed smart applications. Here we exploit commodity, a low cost embedded board to form distributed edge clusters. The cluster of geo-distributed and wireless edge nodes not only power multitenant IoT applications that are closer to the data source and the user, but also enable developers to remotely deploy and orchestrate application containers over the cloud. Specifically, we propose building a software platform to manage the distributed edge nodes along with support services to deploy and launch isolated and multitenant user applications through a lightweight container. In particular, we propose an architectural solution to improve the resilience of edge cloud services through peer collaborated service migration when the failures happen or when resources are overburdened. We focus on giving the developers a single point control of the infrastructure over the intermittent and lossy wide area networks (WANs) and enabling the remote deployment of multitenant applications. 
    more » « less
  2. null (Ed.)
    Edge and fog computing encompass a variety of technologies that are poised to enable new applications across the Internet that support data capture, storage, processing, and communication across the networking continuum. These environments pose new challenges to the design and implementation of networks-as membership can be dynamic and devices are heterogeneous, widely distributed geographically, and in proximity to end-users, as is the case with mobile and Internet-of-Things (IoT) devices. We present a demonstration of EdgeVPN.io (Evio for short), an open-source programmable, software-defined network that addresses challenges in the deployment of virtual networks spanning distributed edge and cloud resources, in particular highlighting its use in support of the Kubernetes container orchestration middleware. The demo highlights a deployment of unmodified Kubernetes middleware across a virtual cluster comprising virtual machines deployed both in cloud providers, and in distinct networks at the edge-where all nodes are assigned private IP addresses and subject to different NAT (Network Address Translation) middleboxes, connected through an Evio virtual network. The demo includes an overview of the configuration of Kubernetes and Evio nodes and the deployment of Docker-based container pods, highlighting the seamless connectivity for TCP/IP applications deployed on the pods. 
    more » « less
  3. The Internet of Things (IoT) is an emerging technology that aims to connect our environment to the internet in the same way that personal computers connected people. As this technology progresses, the IoT paradigm becomes more prevalent in our everyday lives. The nature of IoT applications necessitates devices that are low-cost, power-sensitive, integrated, unobtrusive, and interoperable with existing cloud platforms and services, for example, Amazon AWS IoT, IBM Watson IoT. As a result, these devices are often small in size, with just enough computing power needed for their specific tasks. These resource-constrained devices are often unable to implement traditional network security measures and represent a vulnerability to network attackers as a result. Few frameworks are positioned to handle the influx of this new technology and the security concerns associated with it. Current solutions fail to provide a comprehensive and multi-layer solution to these inherent IoT security vulnerabilities. This paper presents a layered approach to IoT testbed that aims to bridge multiple connection standards and cloud platforms. To solve challenges surrounding this multi-layer IoT testbed, we propose a mesh inside a mesh IoT network architecture. Our designed "edge router" incorporates two mesh networks together and performs seamlessly transmission of multi-standard packets. The proposed IoT testbed interoperates with existing multi-standards (Wi-Fi, 6LoWPAN) and segments of networks, and provides both Internet and resilient sensor coverage to the cloud platform. To ensure confidentiality and authentication of IoT devices when interoperating with multiple service platforms, we propose optimized cryptographic techniques and software frameworks for IoT devices. We propose to extend and modify the existing open-source IDS platforms such as Snort to support IoT platforms and environments. We validate the efficacy of the proposed system by evaluating its performance and effect on key system resources. The work within this testbed design and implementation provides a solid foundation for further IoT system development. 
    more » « less
  4. Leveraging recent advances in technologies surrounding the Internet of Things , “smart” water systems are poised to transform water resources management by enabling ubiquitous real-time sensing and control. Recent applications have demonstrated the potential to improve flood forecasting, enhance rainwater harvesting, and prevent combined sewer overflows. However, adoption of smart water systems has been hindered by a limited number of proven case studies, along with a lack of guidance on how smart water systems should be built. To this end, we review existing solutions, and introduce open storm —an open-source, end-to-end platform for real-time monitoring and control of watersheds. Open storm includes (i) a robust hardware stack for distributed sensing and control in harsh environments (ii) a cloud services platform that enables system-level supervision and coordination of water assets, and (iii) a comprehensive, web-based “how-to” guide, available on open-storm.org, that empowers newcomers to develop and deploy their own smart water networks. We illustrate the capabilities of the open storm platform through two ongoing deployments: (i) a high-resolution flash-flood monitoring network that detects and communicates flood hazards at the level of individual roadways and (ii) a real-time stormwater control network that actively modulates discharges from stormwater facilities to improve water quality and reduce stream erosion. Through these case studies, we demonstrate the real-world potential for smart water systems to enable sustainable management of water resources. 
    more » « less
  5. With the evolution of 5G and Internet of Things technologies, Mobile Edge Computing (MEC) has emerged as a major computing paradigm. Compared to cloud computing, MEC integrates network control, computing, and storage to customizable, fast, reliable, and secure distributed services that are closer to the user and data site. Although a popular research topic, MEC resource management comes in many forms due to its emerging nature and there exists little consensus in the community. In this survey, we present a comprehensive review of existing research problems and relevant solutions within MEC resource management. We first describe the major problems in MEC resource allocation when the user applications have diverse performance requirements. We discuss the unique challenges caused by the dynamic nature of the environments and use cases where MEC is adopted. We also explore and categorize existing solutions that address such challenges. We particularly explore traditional optimization-based methods and deep learning-based approaches. In addition, we take a deeper dive into the most popular applications and use cases that adopt MEC paradigm and how MEC provides customized solutions for each use cases, in particular, video analytics applications. Finally, we outline the open research challenges and future directions. 1 
    more » « less