Abstract Fish scales are bony plates embedded in the skin that vary extensively in shape across taxa. Despite a plethora of hypotheses regarding form–function relationships in scales, we know little about the ecological selective factors that shape their diversity. Here we examine evolutionary patterns of scale morphology using novel three-dimensional topography from the surfaces of 59 species of damselfishes, a prominent radiation of coral reef fishes. We find evidence that scale morphology changes with different flow environments, such that species that spend more time in open-water habitats have smoother scales. We also show that other aspects of ecology lead to highly derived scales. For example, anemonefishes show an evolutionary transition to smaller scales and smaller ctenii (scale spines). Moreover, changes in body shape, which may reflect ecological differentiation, are related to scale shape but not surface properties. We also demonstrate weak evolutionary integration among multiple aspects of scale morphology; however, scale size and shape are related, and scale morphology is correlated between different body regions. Finally, we also identify a relationship between aspects of lateral line pore morphology, such that the number of lateral line pores per scale and the size of those pores are inversely related. Overall, our study provides insights into the multidimensionality of scale evolution and improves our understanding of some of the factors that can give rise to the diversity of scales seen across fishes.
more »
« less
Interactions among multiple selective pressures on the form–function relationship in insular stream fishes
Abstract Relationships between body shape and escape performance are well established for many species. However, organisms can face multiple selection pressures that might impose competing demands. Many fishes use fast starts for escaping predator attacks, whereas some species of gobiid fishes have evolved the ability to climb waterfalls out of predator-dense habitats. The ancestral ‘powerburst’ climbing mechanism uses lateral body undulations to move up waterfalls, whereas a derived ‘inching’ mechanism uses rectilinear locomotion. We examined whether fast-start performance is impacted by selection imposed from the new functional demands of climbing. We predicted that non-climbing species would show morphology and fast-start performance that facilitate predator evasion, because these fish live consistently with predators and are not constrained by the demands of climbing. We also predicted that, by using lateral undulations, powerburst climbers would show escape performance superior to that of inchers. We compared fast starts and body shape across six goby species. As predicted, non-climbing fish exhibited distinct morphology and responded more frequently to an attack stimulus than climbing species. Contrary to our predictions, we found no differences in escape performance among climbing styles. These results indicate that selection for a competing pressure need not limit the ability of prey to escape predator attacks.
more »
« less
- Award ID(s):
- 1942178
- PAR ID:
- 10496670
- Publisher / Repository:
- Biological Journal of the Linnean Society
- Date Published:
- Journal Name:
- Biological Journal of the Linnean Society
- Volume:
- 134
- Issue:
- 3
- ISSN:
- 0024-4066
- Page Range / eLocation ID:
- 557 to 567
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Fishes have repeatedly evolved characteristic body shapes depending on how close they live to the substrate. Pelagic fishes live in open water and typically have narrow, streamlined body shapes; benthic and demersal fishes live close to the substrate; and demersal fishes often have deeper bodies. These shape differences are often associated with behavioral differences: pelagic fishes swim nearly constantly, demersal fishes tend to maneuver near the substrate, and benthic fishes often lie in wait on the substrate. We hypothesized that these morphological and behavioral differences would be reflected in the mechanical properties of the body, and specifically in vertebral column stiffness, because it is an attachment point for the locomotor musculature and a central axis for body bending. The vertebrae of bony fishes are composed of two cones connected by a foramen, which is filled by the notochord. Since the notochord is more flexible than bony vertebral centra, we predicted that pelagic fishes would have narrower foramina or shallower cones, leading to less notochordal material and a stiffer vertebral column which might support continuous swimming. In contrast, we predicted that benthic and demersal fishes would have more notochordal material, making the vertebral column more flexible for diverse behaviors in these species. We therefore examined vertebral morphology in 79 species using micro‐computed tomography scans. Six vertebral features were measured including notochordal foramen diameter, centrum body length, and the cone angles and diameters for the anterior and posterior vertebral cones, along with body fineness. Using phylogenetic generalized least squares analyses, we found that benthic and pelagic species differed significantly, with larger foramina, shorter centra, and larger cones in benthic species. Thus, morphological differences in the internal shape of the vertebrae of fishes are consistent with a stiffer vertebral column in pelagic fishes and with a more flexible vertebral column in benthic species.more » « less
-
Abstract Predation is a fundamental selective pressure on animal morphology, as morphology is directly linked with physical performance and evasion. Bipedal heteromyid rodents, which are characterized by unique morphological traits such as enlarged hindlimbs, appear to be more successful than sympatric quadrupedal rodents at escaping predators such as snakes and owls, but no studies have directly compared the escape performance of bipedal and quadrupedal rodents. We used simulated predator attacks to compare the evasive jumping ability of bipedal kangaroo rats (Dipodomys) to that of three quadrupedal rodent groups—pocket mice (Chaetodipus), woodrats (Neotoma), and ground squirrels (Otospermophilus). Jumping performance of pocket mice was remarkably similar to that of kangaroo rats, which may be driven by their shared anatomical features (such as enlarged hindlimb muscles) and facilitated by their relatively small body size. Woodrats and ground squirrels, in contrast, almost never jumped as a startle response, and they took longer to perform evasive escape maneuvers than the heteromyid species (kangaroo rats and pocket mice). Among the heteromyids, take‐off velocity was the only jump performance metric that differed significantly between species. These results support the idea that bipedal body plans facilitate vertical leaping in larger‐bodied rodents as a means of predator escape and that vertical leaping likely translates to better evasion success.more » « less
-
null (Ed.)Biological armours are potent model systems for understanding the complex series of competing demands on protective exoskeletons; after all, armoured organisms are the product of millions of years of refined engineering under the harshest conditions. Fishes are no strangers to armour, with various types of armour plating common to the 400–500 Myr of evolution in both jawed and jawless fishes. Here, we focus on the poachers (Agonidae), a family of armoured fishes native to temperate waters of the Pacific rim. We examined armour morphology, body stiffness and swimming performance in the northern spearnose poacher ( Agonopsis vulsa ) over ontogeny. As juveniles, these fishes make frequent nocturnal forays into the water column in search of food, while heavily armoured adults are bound to the benthos. Most armour dimensions and density increase with body length, as does body stiffness. Juvenile poachers have enlarged spines on their armour whereas adults invest more mineral in armour plate bases. Adults are stiffer and accelerate faster than juveniles with an anguilliform swimming mode. Subadults more closely approximate adults more than smaller juveniles, with regards to both swimming and armour mechanics. Poacher armour serves multiple functions over ontogeny, from facilitating locomotion, slowing sinking and providing defence.more » « less
-
null (Ed.)Abstract The elongate body plan is present in many groups of fishes, and this morphology dictates functional consequences seen in swimming behavior. Previous work has shown that increasing the number of vertebrae, or decreasing the intervertebral joint length, in a fixed length artificial system increases stiffness. Tails with increased stiffness can generate more power from tail beats, resulting in an increased mean swimming speed. This demonstrates the impacts of morphology on both material properties and kinematics, establishing mechanisms for form contributing to function. Here, we wanted to investigate relationships between form and ecological function, such as differences in dietary strategies and habitat preferences among fish species. This study aims to characterize and compare the kinematics, material properties, and vertebral morphology of four species of elongate fishes: Anoplarchus insignis, Anoplarchus purpurescens, Xiphister atropurpureus, and Xiphister mucosus. We hypothesized that these properties would differ among the four species due to their differential ecological niches. To calculate kinematic variables, we filmed these fishes swimming volitionally. We also measured body stiffness by bending the abdominal and tail regions of sacrificed individuals in different stages of dissection (whole body, removed skin, removed muscle). Finally, we counted the number of vertebrae from CT scans of each species to quantify vertebral morphology. Principal component and linear discriminant analyses suggested that the elongate fish species can be distinguished from one another by their material properties, morphology, and swimming kinematics. With this information combined, we can draw connections between the physical properties of the fishes and their ecological niches.more » « less
An official website of the United States government

