skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Extreme Red-wing Enhancements of UV Lines during the 2022 March 30 X1.3 Solar Flare
Abstract Here, we present the study of a compact emission source during an X1.3 flare on 2022 March 30. Within a ∼41 s period (17:34:48 UT to 17:35:29 UT), Interface Region Imaging Spectrograph observations show spectral lines of Mgii, Cii, and Siivwith extremely broadened, asymmetric red wings. This source of interest (SOI) is compact, ∼1.″6, and is located in the wake of a passing ribbon. Two methods were applied to measure the Doppler velocities associated with these red wings: spectral moments and multi-Gaussian fits. The spectral-moments method considers the averaged shift of the lines, which are 85, 125, and 115 km s−1for the Mgii, Cii, and Siivlines respectively. The red-most Gaussian fit suggests a Doppler velocity up to ∼160 km s−1in all of the three lines. Downward mass motions with such high speeds are very atypical, with most chromospheric downflows in flares on the order 10–100 km s−1. Furthermore, extreme-UV (EUV) emission is strong within flaring loops connecting two flare ribbons located mainly to the east of the central flare region. The EUV loops that connect the SOI and its counterpart source in the opposite field are much less brightened, indicating that the density and/or temperature is comparatively low. These observations suggest a very fast downflowing plasma in the transition region and upper chromosphere, which decelerates rapidly since there is no equivalently strong shift of the O I chromospheric lines. This unusual observation presents a challenge that models of the solar atmosphere’s response to flares must be able to explain.  more » « less
Award ID(s):
2309939 1821294 2108235 2228996
PAR ID:
10496769
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
958
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
67
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Sunspot light bridges (LBs) exhibit a wide range of short-lived phenomena in the chromosphere and transition region. In contrast, we use here data from the Multi-Application Solar Telescope (MAST), the Interface Region Imaging Spectrograph (IRIS), Hinode, the Atmospheric Imaging Assembly (AIA), and the Helioseismic and Magnetic Imager (HMI) to analyze the sustained heating over days in an LB in a regular sunspot. Chromospheric temperatures were retrieved from the MAST Caiiand IRIS Mgiilines by nonlocal thermodynamic equilibrium inversions. Line widths, Doppler shifts, and intensities were derived from the IRIS lines using Gaussian fits. Coronal temperatures were estimated through the differential emission measure, while the coronal magnetic field was obtained from an extrapolation of the HMI vector field. At the photosphere, the LB exhibits a granular morphology with field strengths of about 400 G and no significant electric currents. The sunspot does not fragment, and the LB remains stable for several days. The chromospheric temperature, IRIS line intensities and widths, and AIA 171 and 211 Å intensities are all enhanced in the LB with temperatures from 8000 K to 2.5 MK. Photospheric plasma motions remain small, while the chromosphere and transition region indicate predominantly redshifts of 5–20 km s−1with occasional supersonic downflows exceeding 100 km s−1. The excess thermal energy over the LB is about 3.2 × 1026erg and matches the radiative losses. It could be supplied by magnetic flux loss of the sunspot (7.5 × 1027erg), kinetic energy from the increase in the LB width (4 × 1028erg), or freefall of mass along the coronal loops (6.3 × 1026erg). 
    more » « less
  2. Abstract Small-scale jets, such as chromospheric and transition region (TR) network jets, are of great interest regarding coronal heating and solar wind acceleration. Spectroscopic analysis based on multiple spectral lines with different formation temperatures is essential for understanding the physical properties and driving mechanisms of jets. Here, we conduct an investigation of the physical properties of a small-scale chromospheric jet in a quiet-Sun network region and its TR counterpart. This jet is recorded from formation to extinction using the Fast Imaging Solar Spectrograph at the Goode Solar Telescope and the Interface Region Imaging Spectrograph. The chromospheric component of the jet exhibits a high line-of-sight speed of up to 45 km s−1during its ascending phase, accompanied by spectral profiles akin to rapid blueshifted excursion and downflowing rapid redshifted excursion during the descending phase. Using a cloud model combined with a Multi-Layer Spectral Inversion, we quantify the jet’s temperature during its ascending phase, which starts at approximately 11,000 K and increases by only 1000 K over 1 minute, much smaller than a few 104K, the excess temperature expected in an ideal gas reconnection jet at an outflow speed of 45 km s−1. The TR counterpart exhibits a Siiv1394 Å line profile with a non-Gaussian shape, including a blueshifted component and a large nonthermal width. Our results suggest that if the jet is driven by magnetic reconnection in the chromosphere, the heat released by the reconnection may be mostly used to ionize the hydrogen rather than to increase the temperature so that the gas may appear almost isothermal. 
    more » « less
  3. Abstract We report on a flare-driven coronal rain event observed along postflare loops during the decay phase of an X1.6-class solar flare. Although high-resolution studies of flare-driven coronal rain have been conducted, imaging spectroscopic studies are rare due to observational difficulties. Our observation taken with the Fast Imaging Solar Spectrograph, installed at the 1.6 m Goode Solar Telescope of the Big Bear Solar Observatory, provided unprecedented high-resolution spectroscopic imaging data of coronal rain in the Hαand Caii854.2 nm lines. We identify two locations along postflare loops with rain displaying distinctly different thermal properties, different Doppler velocities, and different patterns of acceleration and deceleration. We also observed intense brightening at one footpoint of coronal rain, where the spectroscopic analysis reveals an energy conversion process resulting in significant localized chromospheric heating. We thoroughly investigate the footpoint brightening Doppler velocities and compare their spectral line profiles to typical flare-ribbon line profiles. We estimate the spatial scale of the fine structure of the coronal rain and the footpoint brightening. Our results provide important insights into the dynamic and thermal properties of flare-driven coronal rain and the related chromospheric response, which will help validate the flare-driven modeling of coronal rain. 
    more » « less
  4. Abstract Despite their somewhat frequent appearance in extreme-ultraviolet (EUV) imaging of off-limb flares, the origins of supra-arcade downflows (SADs) remain a mystery. Appearing as dark, tendril-like downflows above growing flare loop arcades, SADs themselves are yet to be tied into the standard model of solar flares. The uncertainty of their origin is, in part, due to a lack of spectral observations, with the last published SAD spectral observations dating back to the Solar and Heliospheric Observatory/Solar Ultraviolet Measurements of Emitted Radiation era in 2003. In this work, we present new observations of SADs within an M-class solar flare on 2022 April 2, observed by the Hinode EUV Imaging Spectrometer (EIS) and the NASA Solar Dynamics Observatory. We measure FeXXIV192.02 Å Doppler downflows and nonthermal velocities in the low-intensity SAD features, exceeding values measured in the surrounding flare fan. The ratio of temperature-sensitive FeXXIV255.11 Å and FeXXIII263.41 Å lines also allows the measurement of electron temperature, revealing temperatures within the range of the surrounding flare fan. We compare EIS line-of-sight Doppler velocities with plane-of-sky velocities measured by Atmospheric Imaging Assembly, to construct the 3D velocity profile of four prominent SADs, finding evidence for their divergence above the flare loop arcade—possibly related to the presence of a high-altitude termination shock. Finally, we detect “stealth” SADs, which produce SAD-like Doppler signals, yet with no change in intensity. 
    more » « less
  5. Abstract We present UV–optical–near-infrared observations and modeling of supernova (SN) 2024ggi, a type II supernova (SN II) located in NGC 3621 at 7.2 Mpc. Early-time (“flash”) spectroscopy of SN 2024ggi within +0.8 days of discovery shows emission lines of Hi, Hei, Ciii, and Niiiwith a narrow core and broad, symmetric wings (i.e., “IIn-like”) arising from the photoionized, optically thick, unshocked circumstellar material (CSM) that surrounded the progenitor star at shock breakout (SBO). By the next spectral epoch at +1.5 days, SN 2024ggi showed a rise in ionization as emission lines of Heii, Civ, Niv/v, and Ovbecame visible. This phenomenon is temporally consistent with a blueward shift in the UV–optical colors, both likely the result of SBO in an extended, dense CSM. The IIn-like features in SN 2024ggi persist on a timescale oftIIn= 3.8 ± 1.6 days, at which time a reduction in CSM density allows the detection of Doppler-broadened features from the fastest SN material. SN 2024ggi has peak UV–optical absolute magnitudes ofMw2= −18.7 mag andMg= −18.1 mag, respectively, that are consistent with the known population of CSM-interacting SNe II. Comparison of SN 2024ggi with a grid of radiation hydrodynamics and non–local thermodynamic equilibrium radiative-transfer simulations suggests a progenitor mass-loss rate of M ̇ = 10 2 M yr−1(vw= 50 km s−1), confined to a distance ofr< 5 × 1014cm. Assuming a wind velocity ofvw= 50 km s−1, the progenitor star underwent an enhanced mass-loss episode in the last ∼3 yr before explosion. 
    more » « less