Beam management is a strategy to unify beamforming and channel state information (CSI) acquisition with large antenna arrays in 5G. Codebooks serve multiple uses in beam management including beamforming reference signals, CSI reporting, and analog beam training. In this paper, we propose and evaluate a machine learning-refined codebook design process for extremely large multiple-input multiple- output (X-MIMO) systems. We propose a neural network and beam selection strategy to design the initial access and refinement codebooks using end-to-end learning from beamspace representations. The algorithm, called Extreme-Beam Management (X-BM), can significantly improve the performance of extremely large arrays as envisioned for 6G and capture realistic wireless and physical layer aspects. Our results show an 8dB improvement in initial access and overall effective spectral efficiency improvements compared to traditional codebook methods.
more »
« less
Machine Learning Codebook Design for Initial Access and CSI Type-II Feedback in Sub-6GHz 5G NR
Beam codebooks are a recent feature to en- able high dimension multiple-input multiple-output in 5G. Codebooks comprised of customizable beamforming weights can be used to transmit reference signals and aid the channel state information (CSI) acquisition process. Codebooks are also used for quantizing feedback follow- ing CSI measurement. In this paper, we unify the beam management stages–codebook design, beam sweeping, feed- back, and data transmission–to characterize the impact of codebooks throughout the process. We then design a neural network to find codebooks that improve the overall system performance. The proposed neural network is built on translating codebook and feedback knowledge into a consistent beamspace basis similar to a virtual channel model to generate initial access codebooks. This beamspace codebook algorithm is designed to directly integrate with current 5G beam management standards without changing the feedback format or requiring additional side infor- mation. Our simulations show that the neural network codebooks improve over traditional codebooks, even in dispersive sub-6GHz environments. We further use our framework to evaluate CSI feedback formats with regard to multi-user spectral efficiency. Our results suggest that optimizing codebook performance can provide valuable performance improvements, but optimizing the feedback configuration is also important in sub-6GHz bands.
more »
« less
- PAR ID:
- 10496958
- Publisher / Repository:
- IEEE
- Date Published:
- Journal Name:
- IEEE Transactions on Wireless Communications
- ISSN:
- 1536-1276
- Page Range / eLocation ID:
- 1 to 16
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Channel state information (CSI) plays a vital role in scheduling and capacity-approaching transmission optimization of massive MIMO communication systems. In frequency division duplex (FDD) MIMO systems, forward link CSI reconstruction at transmitter relies on CSI feedback from receiving nodes and must carefully weigh the tradeoff between reconstruction accuracy and feedback bandwidth. Recent application of recurrent neural networks (RNN) has demonstrated promising results of massive MIMO CSI feedback compression. However, the cost of computation and memory associated with RNN deep learning remains high. In this work, we exploit channel temporal coherence to improve learning accuracy and feedback efficiency. Leveraging a Markovian model, we develop a deep convolutional neural network (CNN)-based framework called MarkovNet to efficiently encode CSI feedback to improve accuracy and efficiency. We explore important physical insights including spherical normalization of input data and deep learning network optimizations in feedback compression. We demonstrate that MarkovNet provides a substantial performance improvement and computational complexity reduction over the RNN-based work.We demonstrate MarkovNet’s performance under different MIMO configurations and for a range of feedback intervals and rates. CSI recovery with MarkovNet outperforms RNN-based CSI estimation with only a fraction of computational cost.more » « less
-
Multiple-input multiple-outputs (MIMO) systems are integral to the implementation of the current fifth-generation (5G) and beyond wireless networks. Accurate channel state information (CSI) is imperative to a MIMO system for its optimal performance. In this work, we develop an end-to-end software evaluation platform for the channel estimation process in a MIMO system. With this platform, different channel estimation and reconstruction processes, as well as precoding methods can be implemented and evaluated. Channel reconstruction error and transmission bit error rate are chosen metrics in the current implementation. Direct channel estimation with the least square method, and CSI feedback methods with compressive sensing and deep-learning approaches are tested to demonstrate the evaluation platformmore » « less
-
Massive multiple-input multiple-output (MIMO) is an important technology in fifth generation (5G) cellular networks and beyond. To help design the beamforming at the base station, 5G has introduced new support in the form of flexible feedback and configurable antenna array geometries that allow for arbitrarily massive phys- ical arrays. In this article, we present an overview of MIMO throughout the mobile standards, highlight the new beam-based feedback system in 5G NR, and de- scribe how this feedback system enables massive MIMO through beam management. Finally, we conclude with challenges related to massive MIMO in 5G.more » « less
-
Acquiring downlink channel state information (CSI) at the base station is vital for optimizing performance in massive Multiple input multiple output (MIMO) Frequency-Division Duplexing (FDD) systems. While deep learning architectures have been successful in facilitating UE-side CSI feedback and gNB side recovery, the undersampling issue prior to CSI feedback is often overlooked. This issue, which arises from low-density pilot placement in current standards, results in significant aliasing effects in outdoor channels and consequently limits CSI recovery performance. To this end, this work introduces a new CSI upsampling framework at the gNB as a post-processing solution to address the gaps caused by undersampling. Leveraging the physical principles of discrete Fourier transform shifting theorem and multipath reciprocity, our framework effectively uses uplink CSI to mitigate aliasing effects. We further develop a learning based method that integrates the proposed algorithm with the Iterative Shrinkage-Thresholding Algorithm Net (ISTA-Net) architecture, enhancing our approach for non-uniform sampling recovery. Our numerical results show that both our rule-based and deep learning methods significantly outperform traditional interpolation techniques and current state-of-the-art approaches in terms of performance.more » « less
An official website of the United States government

