skip to main content


Search for: All records

Award ID contains: 1754740

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Stratospheric aerosol injection (SAI) of reflective sulfate aerosols has been proposed to temporarily reduce the impacts of global warming. In this study, we compare two SAI simulations which inject at different altitudes to provide the same amount of cooling, finding that lower‐altitude SAI requires 64% more injection. SAI at higher altitudes cools the surface more efficiently per unit injection than lower‐altitude SAI through two primary mechanisms: the longer lifetimes of SO2and SO4at higher altitudes, and the water vapor feedback, in which lower‐altitude SAI causes more heating in the tropical cold point tropopause region, thereby increasing water vapor transport into the stratosphere and trapping more terrestrial infrared radiation that offsets some of the direct aerosol‐induced cooling. We isolate these individual mechanisms and find that the contribution of lifetime effects to differences in cooling efficiency is approximately five to six times larger than the contribution of the water vapor feedback.

     
    more » « less
  2. Abstract. The Geoengineering Model Intercomparison Project (GeoMIP) is a coordinating framework, started in 2010, that includes a series of standardized climate model experiments aimed at understanding the physical processes and projected impacts of solar geoengineering. Numerous experiments have been conducted, and numerous more have been proposed as “test-bed” experiments, spanning a variety of geoengineering techniques aimed at modifying the planetary radiation budget: stratospheric aerosol injection, marine cloud brightening, surface albedo modification, cirrus cloud thinning, and sunshade mirrors. To date, more than 100 studies have been published that used results from GeoMIP simulations. Here we provide a critical assessment of GeoMIP and its experiments. We discuss its successes and missed opportunities, for instance in terms of which experiments elicited more interest from the scientific community and which did not, and the potential reasons why that happened. We also discuss the knowledge that GeoMIP has contributed to the field of geoengineering research and climate science as a whole: what have we learned in terms of intermodel differences, robustness of the projected outcomes for specific geoengineering methods, and future areas of model development that would be necessary in the future? We also offer multiple examples of cases where GeoMIP experiments were fundamental for international assessments of climate change. Finally, we provide a series of recommendations, regarding both future experiments and more general activities, with the goal of continuously deepening our understanding of the effects of potential geoengineering approaches and reducing uncertainties in climate outcomes, important for assessing wider impacts on societies and ecosystems. In doing so, we refine the purpose of GeoMIP and outline a series of criteria whereby GeoMIP can best serve its participants, stakeholders, and the broader science community. 
    more » « less
  3. Solar geoengineering, or deliberate climate modification, has been receiving increased attention in recent years. Given the far-reaching consequences of any potential solar geoengineering deployments, it is prudent to identify inherent biases, blind spots, and other potential issues at all stages of the research process. Here we articulate a feminist science-based framework to concretely describe how solar geoengineering researchers can be more inclusive of different perspectives and potentially contradictory conclusions, in the process illuminating potential implicit bias and enhancing the conclusions that can be gained from their studies. Importantly, this framework is an adoptable method of practice that can be refined, with the aim of conducting better research in solar geoengineering. As an illustration, we retrospectively apply this framework to a well-read solar geoengineering study (also led by the first author of this study), improving transparency by revealing its implicit values, conclusions made from its evidence base, and the methodologies that study pursues. We conclude with a set of recommendations for the geoengineering research community whereby more inclusive research can become a regular part of practice. Throughout this process, we illustrate how feminist science scholars can use this approach to study climate modeling.

     
    more » « less
  4. Abstract Modern science’s ability to produce, store, and analyze big datasets is changing the way that scientific research is practiced. Philosophers have only begun to comprehend the changed nature of scientific reasoning in this age of “big data.” We analyze data-focused practices in biology and climate modeling, identifying distinct species of data-centric science: phenomena-laden in biology and phenomena-agnostic in climate modeling, each better suited for its own domain of application, though each entail trade-offs. We argue that data-centric practices in science are not monolithic because the opportunities and challenges presented by big data vary across scientific domains. 
    more » « less
  5. Making informed future decisions about solar radiation modification (SRM; also known as solar geoengineering)—approaches such as stratospheric aerosol injection (SAI) that would cool the climate by reflecting sunlight—requires projections of the climate response and associated human and ecosystem impacts. These projections, in turn, will rely on simulations with global climate models. As with climate-change projections, these simulations need to adequately span a range of possible futures, describing different choices, such as start date and temperature target, as well as risks, such as termination or interruptions. SRM modeling simulations to date typically consider only a single scenario, often with some unrealistic or arbitrarily chosen elements (such as starting deployment in 2020), and have often been chosen based on scientific rather than policy-relevant considerations (e.g., choosing quite substantial cooling specifically to achieve a bigger response). This limits the ability to compare risks both between SRM and non-SRM scenarios and between different SRM scenarios. To address this gap, we begin by outlining some general considerations on scenario design for SRM. We then describe a specific set of scenarios to capture a range of possible policy choices and uncertainties and present corresponding SAI simulations intended for broad community use. 
    more » « less
  6. null (Ed.)
    Abstract In a recent very influential court case, Juliana v. United States , climate scientist Kevin Trenberth used the “storyline” approach to extreme event attribution to argue that greenhouse warming had affected and will affect extreme events in their regions to such an extent that the plaintiffs already had been or will be harmed. The storyline approach to attribution is deterministic rather than probabilistic, taking certain factors as contingent and assessing the role of climate change conditional on those factors. The US Government’s opposing expert witness argued that Trenberth had failed to make his case because “all his conclusions of the injuries to Plaintiffs suffer from the same failure to connect his conditional approach to Plaintiffs’ local circumstances.” The issue is whether it is possible to make statements about individual events based on general knowledge. A similar question is sometimes debated within the climate science community. We argue here that proceeding from the general to the specific is a process of deduction and is an entirely legitimate form of scientific reasoning. We further argue that it is well aligned with the concept of legal evidence, much more so than the more usual inductive form of scientific reasoning, which proceeds from the specific to the general. This has implications for how attribution science can be used to support climate change litigation. “The question is”, said Alice, “whether you can make words mean different things.” “The question is”, said Humpty Dumpty, “which is to be master — that’s all.” (Lewis Carroll, Alice’s Adventures in Wonderland). 
    more » « less
  7. null (Ed.)
    Abstract Standards of proof for attributing real world events/damage to global warming should be the same as in clinical or environmental lawsuits, argue Lloyd et al. The central question that we raise is effective communication. How can climate scientists best and effectively communicate their findings to crucial non-expert audiences, including public policy makers and civil society? To address this question, we look at the mismatch between what courts require and what climate scientists are setting as a bar of proof. Our first point is that scientists typically demand too much of themselves in terms of evidence, in comparison with the level of evidence required in a legal, regulatory, or public policy context. Our second point is to recommend that the Intergovernmental Panel on Climate Change recommend more prominently the use of the category “more likely than not” as a level of proof in their reports, as this corresponds to the standard of proof most frequently required in civil court rooms. This has also implications for public policy and the public communication of climate evidence. 
    more » « less
  8. null (Ed.)
    Abstract In this paper we consider some questions surrounding whether or not regional climate models “add value,” a controversial issue in climate science today. We highlight some objections frequently made about regional climate models both within and outside the community of modelers, including several claims that regional climate models do not “add value.” We show that there are a number of issues involved in the latter claims, the primary ones centering on the fact that different research questions are being pursued by the modelers making the complaints against regional climate models. Further issues focus on historical deficiencies of particular—but not generalizable—failures of individual regional models. We provide tools to sort out these different research questions and particular failures, and to improve communication and understanding surrounding added value in climate modeling and philosophy of climate science. 
    more » « less