Abstract Atmospheric rivers (ARs), intrusions of warm and moist air, can effectively drive weather extremes over the Arctic and trigger subsequent impact on sea ice and climate. What controls the observed multi-decadal Arctic AR trends remains unclear. Here, using multiple sources of observations and model experiments, we find that, contrary to the uniform positive trend in climate simulations, the observed Arctic AR frequency increases by twice as much over the Atlantic sector compared to the Pacific sector in 1981-2021. This discrepancy can be reconciled by the observed positive-to-negative phase shift of Interdecadal Pacific Oscillation (IPO) and the negative-to-positive phase shift of Atlantic Multidecadal Oscillation (AMO), which increase and reduce Arctic ARs over the Atlantic and Pacific sectors, respectively. Removing the influence of the IPO and AMO can reduce the projection uncertainties in near-future Arctic AR trends by about 24%, which is important for constraining projection of Arctic warming and the timing of an ice-free Arctic.
more »
« less
Quantifying Contributions of External Forcing and Internal Variability to Arctic Warming During 1900–2021
Abstract Arctic warming has significant environmental and social impacts. Arctic long‐term warming trend is modulated by decadal‐to‐multidecadal variations. Improved understanding of how different external forcings and internal variability affect Arctic surface air temperature (SAT) is crucial for explaining and predicting Arctic climate changes. We analyze multiple observational data sets and large ensembles of climate model simulations to quantify the contributions of specific external forcings and various modes of internal variability to Arctic SAT changes during 1900–2021. We find that the long‐term trend and total variance in Arctic‐mean SAT since 1900 are largely forced responses, including warming due to greenhouse gases and natural forcings and cooling due to anthropogenic aerosols. In contrast, internal variability dominates the early 20th century Arctic warming and mid‐20th century Arctic cooling. Internal variability also explains ∼40% of the recent Arctic warming from 1979 to 2021. Unforced changes in Arctic SAT are largely attributed to two leading modes. The first is pan‐Arctic warming with stronger loading over the Eurasian sector, accounting for 70% of the unforced variance and closely related to the positive phase of the unforced Atlantic Multidecadal Oscillation (AMO). The second mode exhibits relatively weak warming averaged over the entire Arctic with warming over the North American‐Pacific sector and cooling over the Atlantic sector, explaining 10% of the unforced variance and likely caused by the positive phase of the unforced Interdecadal Pacific Oscillation (IPO). The AMO‐related changes dominate the unforced Arctic warming since 1979, while the IPO‐related changes contribute to the decadal SAT changes over the North American‐Pacific Arctic.
more »
« less
- PAR ID:
- 10513449
- Publisher / Repository:
- AGU
- Date Published:
- Journal Name:
- Earth's Future
- Volume:
- 12
- Issue:
- 5
- ISSN:
- 2328-4277
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract In the past 40 years, the global annual mean surface temperature has experienced a nonuniform warming, differing from the spatially uniform warming simulated by the forced responses of large multimodel ensembles to anthropogenic forcing. Rather, it exhibits significant asymmetry between the Arctic and Antarctic, with intermittent and spatially varying warming trends along the Northern Hemisphere (NH) midlatitudes and a slight cooling in the tropical eastern Pacific. In particular, this “wavy” pattern of temperature changes over the NH midlatitudes features strong cooling over Eurasia in boreal winter. Here, we show that these nonuniform features of surface temperature changes are likely tied together by tropical eastern Pacific sea surface temperatures (SSTs), via a global atmospheric teleconnection. Using six reanalyses, we find that this teleconnection can be consistently obtained as a leading circulation mode in the past century. This tropically driven teleconnection is associated with a Pacific SST pattern resembling the interdecadal Pacific oscillation (IPO), and hereafter referred to as the IPO-related bipolar teleconnection (IPO-BT). Further, two paleo-reanalysis reconstruction datasets show that the IPO-BT is a robust recurrent mode over the past 400 and 2000 years. The IPO-BT mode may thus serve as an important internal mode that regulates high-latitude climate variability on multidecadal time scales, favoring a warming (cooling) episode in the Arctic accompanied by cooling (warming) over Eurasia and the Southern Ocean (SO). Thus, the spatial nonuniformity of recent surface temperature trends may be partially explained by the enhanced appearance of the IPO-BT mode by a transition of the IPO toward a cooling phase in the eastern Pacific in the past decades.more » « less
-
Recent concurrent shifts of the East Asian polar-front jet (EAPJ) and the East Asian subtropical jet (EASJ) in the boreal winter have raised concerns, since they could result in severe weather events over East Asia. However, the possible mechanisms are not fully understood. In this study, the roles of the interdecadal Pacific oscillation (IPO) and the Atlantic multidecadal oscillation (AMO) are investigated by analyzing reanalysis data and model simulations. Results show that combinations of opposite phases of the IPO and AMO can result in significant shifts of the two jets during 1920–2014. This relationship is particularly evident during 1999–2014 and 1979–98 in the reanalysis data. A combination of a negative phase of the IPO (−IPO) and a positive phase of the AMO (+AMO) since the late 1990s has enhanced the meridional temperature gradient and the Eady growth rate and thus westerlies over the region between the two jets, but weakened them to the south and north of the region, thereby contributing to the equatorward and poleward shifts of the EAPJ and EASJ, respectively. Atmospheric model simulations are further used to investigate the relative contribution of −IPO and +AMO to the jet shifts. The model simulations show that the combination of −IPO and +AMO favors the recent jet changes more than the individual −IPO or +AMO. Under a concurrent −IPO and +AMO, the meridional eddy transport of zonal momentum and sensitive heat strengthens, and more mean available potential energy converts to the eddy available potential energy over the region between the two jets, which enhances westerly winds there.more » « less
-
Abstract This study quantifies the contributions of tropical sea surface temperature (SST) variations during the boreal warm season to the interannual-to-decadal variability in tropical cyclone genesis frequency (TCGF) over the Northern Hemisphere ocean basins. The first seven leading modes of tropical SST variability are found to affect basinwide TCGF in one or more basins, and are related to canonical El Niño–Southern Oscillation (ENSO), global warming (GW), the Pacific meridional mode (PMM), Atlantic multidecadal oscillation (AMO), Pacific decadal oscillation (PDO), and the Atlantic meridional mode (AMM). These modes account for approximately 58%, 50%, and 56% of the variance in basinwide TCGF during 1969–2018 over the North Atlantic (NA), northeast Pacific (NEP), and northwest Pacific (NWP) Oceans, respectively. The SST effect is weak on TCGF variability in the north Indian Ocean. The SST modes dominating TCGF variability differ among the basins: ENSO, the AMO, AMM, and GW are dominant for the NA; ENSO and the AMO for the NEP; and the PMM, interannual AMO, and GW for the NWP. A specific mode may have opposite effects on TCGF in different basins, particularly between the NA and NEP. Sliding-window multiple linear regression analyses show that the SST effects on basinwide TCGF are stable in time in the NA and NWP, but have strengthened since the 1990s in the NEP. The SST effects on local TC genesis and occurrence frequency are also explored, and the underlying physical mechanisms are examined by diagnosing a genesis potential index and its components.more » « less
-
Key Points The external radiative forcing is the primary driver of the 1979–2013 warming for April–September, with varying decadal warming rates The interdecadal Pacific and Atlantic multidecadal variability intensify/dampen the warming when transitioning to positive/negative phase The combined effects of these factors reproduce the observed varied pace of decadal Arctic troposphere warming during 1979–2013more » « less
An official website of the United States government

