skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Effect of Spatial and Spectral Scaling on Joint Characterization of the Spectral Mixture Residual: Comparative Analysis of AVIRIS and WorldView-3 SWIR for Geologic Mapping in Anza-Borrego Desert State Park
A geologic map is both a visual depiction of the lithologies and structures occurring at the Earth’s surface and a representation of a conceptual model for the geologic history in a region. The work needed to capture such multifaced information in an accurate geologic map is time consuming. Remote sensing can complement traditional primary field observations, geochemistry, chronometry, and subsurface geophysical data in providing useful information to assist with the geologic mapping process. Two novel sources of remote sensing data are particularly relevant for geologic mapping applications: decameter-resolution imaging spectroscopy (spectroscopic imaging) and meter-resolution multispectral shortwave infrared (SWIR) imaging. Decameter spectroscopic imagery can capture important mineral absorptions but is frequently unable to spatially resolve important geologic features. Meter-resolution multispectral SWIR images are better able to resolve fine spatial features but offer reduced spectral information. Such disparate but complementary datasets can be challenging to integrate into the geologic mapping process. Here, we conduct a comparative analysis of spatial and spectral scaling for two such datasets: one Airborne Visible/Infrared Imaging Spectrometer—Classic (AVIRIS-classic) flightline, and one WorldView-3 (WV3) scene, for a geologically complex landscape in Anza-Borrego Desert State Park, California. To do so, we use a two-stage framework that synthesizes recent advances in the spectral mixture residual and joint characterization. The mixture residual uses the wavelength-explicit misfit of a linear spectral mixture model to capture low variance spectral signals. Joint characterization utilizes nonlinear dimensionality reduction (manifold learning) to visualize spectral feature space topology and identify clusters of statistically similar spectra. For this study area, the spectral mixture residual clearly reveals greater spectral dimensionality in AVIRIS than WorldView (99% of variance in 39 versus 5 residual dimensions). Additionally, joint characterization shows more complex spectral feature space topology for AVIRIS than WorldView, revealing information useful to the geologic mapping process in the form of mineralogical variability both within and among mapped geologic units. These results illustrate the potential of recent and planned imaging spectroscopy missions to complement high-resolution multispectral imagery—along with field and lab observations—in planning, collecting, and interpreting the results from geologic field work.  more » « less
Award ID(s):
2226649
PAR ID:
10497002
Author(s) / Creator(s):
; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Sensors
Volume:
23
Issue:
15
ISSN:
1424-8220
Page Range / eLocation ID:
6742
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. NASA’s Earth Surface Mineral Dust Source Investigation (EMIT) mission seeks to use spaceborne imaging spectroscopy (hyperspectral imaging) to map the mineralogy of arid dust source regions. Here we apply recent developments in Joint Characterization (JC) and the spectral Mixture Residual (MR) to explore the information content of data from this novel mission. Specifically, for a mosaic of 20 spectrally diverse scenes, we find: (1) a generalized three-endmember (Substrate, Vegetation, Dark; SVD) spectral mixture model is capable of capturing the preponderance (99% in three dimensions) of spectral variance with low misfit (99% pixels with <3.7% RMSE); (2) manifold learning (UMAP) is capable of identifying spatially coherent, physically interpretable clustering relationships in the spectral feature space; (3) UMAP yields results that are at least as informative when applied to the MR as when applied to raw reflectance; (4) SVD fraction information usefully contextualizes UMAP clustering relationships, and vice-versa (JC); and (5) when EMIT data are convolved to spectral response functions of multispectral instruments (Sentinel-2, Landsat 8/9, Planet SuperDove), SVD fractions correlate strongly across sensors, but UMAP clustering relationships for the EMIT hyperspectral feature space are far more informative than for simulated multispectral sensors. Implications are discussed for both the utility of EMIT data in the near-term and for the potential of high signal-to-noise (SNR) spaceborne imaging spectroscopy more generally, to transform the future of optical remote sensing in the years and decades to come. 
    more » « less
  2. The monitoring of agronomic parameters like biomass, water stress, and plant health can benefit from synergistic use of all available remotely sensed information. Multispectral imagery has been used for this purpose for decades, largely with vegetation indices (VIs). Many multispectral VIs exist, typically relying on a single feature—the spectral red edge—for information. Where hyperspectral imagery is available, spectral mixture models can use the full VSWIR spectrum to yield further insight, simultaneously estimating area fractions of multiple materials within mixed pixels. Here we investigate the relationships between VIs and mixture models by comparing hyperspectral endmember fractions to six common multispectral VIs in California’s diverse crops and soils. In so doing, we isolate spectral effects from sensor- and acquisition-specific variability associated with atmosphere, illumination, and view geometry. Specifically, we compare: (1) fractional area of photosynthetic vegetation (Fv) from 64,000,000 3–5 m resolution AVIRIS-ng reflectance spectra; and (2) six popular VIs (NDVI, NIRv, EVI, EVI2, SR, DVI) computed from simulated Planet SuperDove reflectance spectra derived from the AVIRIS-ng spectra. Hyperspectral Fv and multispectral VIs are compared using both parametric (Pearson correlation, ρ) and nonparametric (Mutual Information, MI) metrics. Four VIs (NIRv, DVI, EVI, EVI2) showed strong linear relationships with Fv (ρ > 0.94; MI > 1.2). NIRv and DVI showed strong interrelation (ρ > 0.99, MI > 2.4), but deviated from a 1:1 correspondence with Fv. EVI and EVI2 were strongly interrelated (ρ > 0.99, MI > 2.3) and more closely approximated a 1:1 relationship with Fv. In contrast, NDVI and SR showed a weaker, nonlinear, heteroskedastic relation to Fv (ρ < 0.84, MI = 0.69). NDVI exhibited both especially severe sensitivity to unvegetated background (–0.05 < NDVI < +0.6) and saturation (0.2 < Fv < 0.8 for NDVI = 0.7). The self-consistent atmospheric correction, radiometry, and sun-sensor geometry allows this simulation approach to be further applied to indices, sensors, and landscapes worldwide. 
    more » « less
  3. null (Ed.)
    Alaska has witnessed a significant increase in wildfire events in recent decades that have been linked to drier and warmer summers. Forest fuel maps play a vital role in wildfire management and risk assessment. Freely available multispectral datasets are widely used for land use and land cover mapping, but they have limited utility for fuel mapping due to their coarse spectral resolution. Hyperspectral datasets have a high spectral resolution, ideal for detailed fuel mapping, but they are limited and expensive to acquire. This study simulates hyperspectral data from Sentinel-2 multispectral data using the spectral response function of the Airborne Visible/Infrared Imaging Spectrometer-Next Generation (AVIRIS-NG) sensor, and normalized ground spectra of gravel, birch, and spruce. We used the Uniform Pattern Decomposition Method (UPDM) for spectral unmixing, which is a sensor-independent method, where each pixel is expressed as the linear sum of standard reference spectra. The simulated hyperspectral data have spectral characteristics of AVIRIS-NG and the reflectance properties of Sentinel-2 data. We validated the simulated spectra by visually and statistically comparing it with real AVIRIS-NG data. We observed a high correlation between the spectra of tree classes collected from AVIRIS-NG and simulated hyperspectral data. Upon performing species level classification, we achieved a classification accuracy of 89% for the simulated hyperspectral data, which is better than the accuracy of Sentinel-2 data (77.8%). We generated a fuel map from the simulated hyperspectral image using the Random Forest classifier. Our study demonstrated that low-cost and high-quality hyperspectral data can be generated from Sentinel-2 data using UPDM for improved land cover and vegetation mapping in the boreal forest. 
    more » « less
  4. High resolution mapping of coastal habitats is invaluable for resource inventory, change detection, and inventory of aquaculture applications. However, coastal areas, especially the interior of mangroves, are often difficult to access. An Unmanned Aerial Vehicle (UAV), equipped with a multispectral sensor, affords an opportunity to improve upon satellite imagery for coastal management because of the very high spatial resolution, multispectral capability, and opportunity to collect real-time observations. Despite the recent and rapid development of UAV mapping applications, few articles have quantitatively compared how much improvement there is of UAV multispectral mapping methods compared to more conventional remote sensing data such as satellite imagery. The objective of this paper is to quantitatively demonstrate the improvements of a multispectral UAV mapping technique for higher resolution images used for advanced mapping and assessing coastal land cover. We performed multispectral UAV mapping fieldwork trials over Indian River Lagoon along the central Atlantic coast of Florida. Ground Control Points (GCPs) were collected to generate a rigorous geo-referenced dataset of UAV imagery and support comparison to geo-referenced satellite and aerial imagery. Multi-spectral satellite imagery (Sentinel-2) was also acquired to map land cover for the same region. NDVI and object-oriented classification methods were used for comparison between UAV and satellite mapping capabilities. Compared with aerial images acquired from Florida Department of Environmental Protection, the UAV multi-spectral mapping method used in this study provided advanced information of the physical conditions of the study area, an improved land feature delineation, and a significantly better mapping product than satellite imagery with coarser resolution. The study demonstrates a replicable UAV multi-spectral mapping method useful for study sites that lack high quality data. 
    more » « less
  5. null (Ed.)
    Abstract. Current cloud and aerosol identification methods for multispectral radiometers, such as the Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS), employ multichannel spectral tests on individual pixels (i.e., fields of view). The use of the spatial information in cloud and aerosol algorithms has been primarily through statistical parameters such as nonuniformity tests of surrounding pixels with cloud classification provided by the multispectral microphysical retrievals such as phase and cloud top height. With these methodologies there is uncertainty in identifying optically thick aerosols, since aerosols and clouds have similar spectral properties in coarse-spectral-resolution measurements. Furthermore, identifying clouds regimes (e.g., stratiform, cumuliform) from just spectral measurements is difficult, since low-altitude cloud regimes have similar spectral properties. Recent advances in computer vision using deep neural networks provide a new opportunity to better leverage the coherent spatial information in multispectral imagery. Using a combination of machine learning techniques combined with a new methodology to create the necessary training data, we demonstrate improvements in the discrimination between cloud and severe aerosols and an expanded capability to classify cloud types. The labeled training dataset was created from an adapted NASA Worldview platform that provides an efficient user interface to assemble a human-labeled database of cloud and aerosol types. The convolutional neural network (CNN) labeling accuracy of aerosols and cloud types was quantified using independent Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and MODIS cloud and aerosol products. By harnessing CNNs with a unique labeled dataset, we demonstrate the improvement of the identification of aerosols and distinct cloud types from MODIS and VIIRS images compared to a per-pixel spectral and standard deviation thresholding method. The paper concludes with case studies that compare the CNN methodology results with the MODIS cloud and aerosol products. 
    more » « less