skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Sea Ice Loss, Water Vapor Increases, and Their Interactions with Atmospheric Energy Transport in Driving Seasonal Polar Amplification
Abstract The ice–albedo feedback associated with sea ice loss contributes to polar amplification, while the water vapor feedback contributes to tropical amplification of surface warming. However, these feedbacks are not independent of atmospheric energy transport, raising the possibility of complex interactions that may obscure the drivers of polar amplification, in particular its manifestation across the seasonal cycle. Here, we apply a radiative transfer hierarchy to an idealized aquaplanet global climate model coupled to a thermodynamic sea ice model. The climate responses and radiative feedbacks are decomposed into the contributions from sea ice loss, including both retreat and thinning, and the radiative effect of water vapor changes. We find that summer sea ice retreat causes winter polar amplification through ocean heat uptake and release, and the resulting decrease in dry energy transport weakens the magnitude of warming. Moreover, sea ice thinning is found to suppress summer warming and enhance winter warming, additionally contributing to winter amplification. The water vapor radiative effect produces seasonally symmetric polar warming via offsetting effects: enhanced moisture in the summer hemisphere induces the summer water vapor feedback and simultaneously strengthens the winter latent energy transport in the winter hemisphere by increasing the meridional moisture gradient. These results reveal the importance of changes in atmospheric energy transport induced by sea ice retreat and increased water vapor to seasonal polar amplification, elucidating the interactions among these physical processes.  more » « less
Award ID(s):
1753034 1828315
PAR ID:
10497082
Author(s) / Creator(s):
 ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of Climate
Volume:
37
Issue:
8
ISSN:
0894-8755
Format(s):
Medium: X Size: p. 2713-2725
Size(s):
p. 2713-2725
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Sea‐ice loss and radiative feedbacks have been proposed to explain Arctic amplification (AA)—the enhanced Arctic warming under increased greenhouse gases, but their relationship is unclear. By analyzing coupled CESM1 simulations with 1%/year CO2increases, we show that without large sea‐ice loss and AA, the lapse rate, Planck, and surface albedo feedbacks are greatly reduced, while the positive water vapor feedback changes little. The positive Arctic lapse rate feedback, which results from enhanced surface warming rather than the high stability of Arctic air, and changes in atmospheric energy transport across the Arctic Circle are a result, not a cause, of AA; while the water vapor feedback also plays a minor role. Instead, AA results from enhanced winter oceanic heating associated with sea‐ice loss that is aided by a positive surface albedo feedback in summer and positive cloud feedback in winter. 
    more » « less
  2. Abstract Radiative climate feedbacks in the Arctic have been extensively studied, but their spatial and seasonal variations have not been thoroughly examined. Using ERA5 reanalysis data, we examine seasonal variations in Arctic climate feedbacks and their relationship to sea‐ice loss based on changes from 1950–1979 to 1990–2019. The spring and summer seasons experienced large sea‐ice loss, strong surface albedo feedback, and large oceanic heat uptake. Arctic clouds exerted small net cooling in May‐June‐July but moderate warming during the cold season, especially over areas with large sea‐ice loss where cloud liquid and ice water content increased. Arctic water vapor feedback peaked in summer but was weak and uncorrelated with sea‐ice loss. Arctic positive lapse rate feedback (LRF) was strongest in winter over areas with large sea‐ice loss and weak inversion but uncorrelated with atmospheric stability, suggesting that oceanic heating from sea‐ice loss led to enhanced surface warming and the positive LRF. 
    more » « less
  3. As a step towards understanding the fundamental drivers of polar climate change, we evaluate contributions to polar warming and its seasonal and hemispheric asymmetries in Coupled Model Intercomparison Project phase 6 (CMIP6) as compared with CMIP5. CMIP6 models broadly capture the observed pattern of surface- and winter-dominated Arctic warming that has outpaced both tropical and Antarctic warming in recent decades. For both CMIP5 and CMIP6, CO 2 quadrupling experiments reveal that the lapse-rate and surface albedo feedbacks contribute most to stronger warming in the Arctic than the tropics or Antarctic. The relative strength of the polar surface albedo feedback in comparison to the lapse-rate feedback is sensitive to the choice of radiative kernel, and the albedo feedback contributes most to intermodel spread in polar warming at both poles. By separately calculating moist and dry atmospheric heat transport, we show that increased poleward moisture transport is another important driver of Arctic amplification and the largest contributor to projected Antarctic warming. Seasonal ocean heat storage and winter-amplified temperature feedbacks contribute most to the winter peak in warming in the Arctic and a weaker winter peak in the Antarctic. In comparison with CMIP5, stronger polar warming in CMIP6 results from a larger surface albedo feedback at both poles, combined with less-negative cloud feedbacks in the Arctic and increased poleward moisture transport in the Antarctic. However, normalizing by the global-mean surface warming yields a similar degree of Arctic amplification and only slightly increased Antarctic amplification in CMIP6 compared to CMIP5. 
    more » « less
  4. Abstract The uncertainty in polar cloud feedbacks calls for process understanding of the cloud response to climate warming. As an initial step toward improved process understanding, we investigate the seasonal cycle of polar clouds in the current climate by adopting a novel modeling framework using large eddy simulations (LES), which explicitly resolve cloud dynamics. Resolved horizontal and vertical advection of heat and moisture from an idealized general circulation model (GCM) are prescribed as forcing in the LES. The LES are also forced with prescribed sea ice thickness, but surface temperature, atmospheric temperature, and moisture evolve freely without nudging. A semigray radiative transfer scheme without water vapor and cloud feedbacks allows the GCM and LES to achieve closed energy budgets more easily than would be possible with more complex schemes. This enables the mean states in the two models to be consistently compared, without the added complications from interaction with more comprehensive radiation. We show that the LES closely follow the GCM seasonal cycle, and the seasonal cycle of low‐level clouds in the LES resembles observations: maximum cloud liquid occurs in late summer and early autumn, and winter clouds are dominated by ice in the upper troposphere. Large‐scale advection of moisture provides the main source of water vapor for the liquid‐containing clouds in summer, while a temperature advection peak in winter makes the atmosphere relatively dry and reduces cloud condensate. The framework we develop and employ can be used broadly for studying cloud processes and the response of polar clouds to climate warming. 
    more » « less
  5. Abstract The dynamic and thermodynamic mechanisms that link retreating sea ice to increased Arctic cloud amount and cloud water content are unclear. Using the fifth generation of the ECMWF Reanalysis (ERA5), the long-term changes between years 1950–79 and 1990–2019 in Arctic clouds are estimated along with their relationship to sea ice loss. A comparison of ERA5 to CERES satellite cloud fractions reveals that ERA5 simulates the seasonal cycle, variations, and changes of cloud fraction well over water surfaces during 2001–20. This suggests that ERA5 may reliably represent the cloud response to sea ice loss because melting sea ice exposes more water surfaces in the Arctic. Increases in ERA5 Arctic cloud fraction and water content are largest during October–March from ∼950 to 700 hPa over areas with significant (≥15%) sea ice loss. Further, regions with significant sea ice loss experience higher convective available potential energy (∼2–2.75 J kg−1), planetary boundary layer height (∼120–200 m), and near-surface specific humidity (∼0.25–0.40 g kg−1) and a greater reduction of the lower-tropospheric temperature inversion (∼3°–4°C) than regions with small (<15%) sea ice loss in autumn and winter. Areas with significant sea ice loss also show strengthened upward motion between 1000 and 700 hPa, enhanced horizontal convergence (divergence) of air, and decreased (increased) relative humidity from 1000 to 950 hPa (950–700 hPa) during the cold season. Analyses of moisture divergence, evaporation minus precipitation, and meridional moisture flux fields suggest that increased local surface water fluxes, rather than atmospheric motions, provide a key source of moisture for increased Arctic clouds over newly exposed water surfaces during October–March. Significance StatementSea ice loss has been shown to be a primary contributor to Arctic warming. Despite the evidence linking large sea ice retreat to Arctic warming, some studies have suggested that enhanced downwelling longwave radiation associated with increased clouds and water vapor is the primary reason for Arctic amplification. However, it is unclear how sea ice loss is linked to changes in clouds and water vapor in the Arctic. Here, we investigate the relationship between Arctic sea ice loss and changes in clouds using the ERA5 dataset. Improved knowledge of the relationship between Arctic sea ice loss and changes in clouds will help further our understanding of the role of the cloud feedback in Arctic warming. 
    more » « less