Delafossite structured ternary nitrides, ABN 2 , have been of recent experimental investigation for applications such as tandem solar and photoelectrochemical cells. We present a thorough first principles computational investigation of their stability, electronic structure, and optical properties. Nine compounds, where A = Cu, Ag, Au and B = V, Nb, Ta, were studied. For three of these compounds, CuTaN 2 , CuNbN 2 , and AgTaN 2 , our computations agree well with experimental results. Optimized lattice parameters, formation energies, and mechanical properties have been computed using the generalized gradient approximation (GGA). Phonon density of states computed at zero-temperature shows that all compounds are dynamically unstable at low temperatures. Including finite-temperature anharmonic effects stabilizes all compounds at 300 K, with the exception of AgVN 2 . Analysis of Crystal Orbital Hamiltonian Populations (COHP) provides insight into the bonding and antibonding characters of A–N and B–N pairs. Instability at low temperatures can be attributed to strong A–N antibonding character near the Fermi energy. B–N bonding is found to be crucial in maintaining stability of the structure. AgVN 2 is the only compound to display significant B–N antibonding below the Fermi energy, as well as the strongest degree of A–N antibonding, both of which provide explanation for the sustained instability of this compound up to 900 K. Hybrid functional calculations of electronic and optical properties show that real static dielectric constants in the semiconductors are related to corresponding band gaps through the Moss relation. CuTaN 2 , CuNbN 2 , AgTaN 2 , AgNbN 2 , AgVN 2 , AuTaN 2 , and AuNbN 2 exhibit indirect electronic band gaps while CuVN 2 and AuVN 2 are metallic. Imaginary parts of the dielectric function are characterized by d–d interband transitions in the semiconductors and d–d intraband transitions in the metals. Four compounds, CuTaN 2 , CuNbN 2 , AgTaN 2 , and AgNbN 2 , are predicted to exhibit large light absorption in the range of 1.0 to 1.7 eV, therefore making these materials good candidates for solar-energy conversion applications. Two compounds, AuTaN 2 and AuNbN 2 , have band gaps and absorption onsets near the ideal range for obtaining high solar-cell conversion efficiency, suggesting that these compounds could become potential candidates as absorber materials in tandem solar cells or for band-gap engineering by alloying. 
                        more » 
                        « less   
                    
                            
                            Excitonic effects in the optical absorption of gapless semiconductor α -tin near the direct bandgap
                        
                    
    
            Most cubic semiconductors have threefold degenerate p-bonding valence bands and nondegenerate s-antibonding conduction bands. This allows strong interband transitions from the valence to the conduction bands. On the other hand, intervalence band transitions within p-bonding orbitals in conventional p-type semiconductors are forbidden at k=0 and, therefore, weak, but observable. In gapless semiconductors, however, the s-antibonding band moves down between the split-off hole band and the valence band maximum due to the Darwin shift. This band arrangement makes them three-dimensional topological insulators. It also allows strong interband transitions from the s-antibonding valence band to the p-bonding bands, which have been observed in α-tin with Fourier-transform infrared spectroscopic ellipsometry [Carrasco et al., Appl. Phys. Lett. 113, 232104 (2018)]. This manuscript presents a theoretical description of such transitions applicable to many gapless semiconductors. This model is based on k→⋅p→ theory, degenerate carrier statistics, the excitonic Sommerfeld enhancement, and screening of the transitions by many-body effects. The impact of nonparabolic bands is approximated within Kane’s 8×8k→⋅p→-model by adjustments of the effective masses. This achieves agreement with experiments. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2235447
- PAR ID:
- 10497193
- Publisher / Repository:
- AIPP
- Date Published:
- Journal Name:
- Journal of Vacuum Science & Technology B
- Volume:
- 42
- Issue:
- 2
- ISSN:
- 2166-2746
- Page Range / eLocation ID:
- 022203
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Half-Heusler materials are strong candidates for thermoelectric applications due to their high weighted mobilities and power factors, which is known to be correlated to valley degeneracy in the electronic band structure. However, there are over 50 known semiconducting half-Heusler phases, and it is not clear how the chemical composition affects the electronic structure. While all the n-type electronic structures have their conduction band minimum at either the Γ - or X -point, there is more diversity in the p-type electronic structures, and the valence band maximum can be at either the Γ -, L -, or W -point. Here, we use high throughput computation and machine learning to compare the valence bands of known half-Heusler compounds and discover new chemical guidelines for promoting the highly degenerate W -point to the valence band maximum. We do this by constructing an “orbital phase diagram” to cluster the variety of electronic structures expressed by these phases into groups, based on the atomic orbitals that contribute most to their valence bands. Then, with the aid of machine learning, we develop new chemical rules that predict the location of the valence band maximum in each of the phases. These rules can be used to engineer band structures with band convergence and high valley degeneracy.more » « less
- 
            null (Ed.)Angle-resolved photoemission spectroscopy (ARPES) is a vital technique, collecting data from both the energy and momentum of photoemitted electrons, and is indispensable for investigating the electronic band structure of solids. This article provides a review on ARPES studies of the electronic band structure of organic single crystals, including organic charge transfer conductors; organic semiconductors; and organo-metallic perovskites. In organic conductors and semiconductors, band dispersions are observed that are highly anisotropic. The Van der Waals crystal nature, the weak electron wavefunction overlap, as well as the strong electron-phonon coupling result in many organic crystals having indiscernible dispersion. In comparison, organo-metallic perovskite halides are characterized by strong s-p orbitals from the metal and halide at the top of the valence bands, with dispersions similar to those in inorganic materials.more » « less
- 
            Abstract Trigonal tellurium (Te) is a chiral semiconductor that lacks both mirror and inversion symmetries, resulting in complex band structures with Weyl crossings and unique spin textures. Detailed time-resolved polarized reflectance spectroscopy is used to investigate its band structure and carrier dynamics. The polarized transient spectra reveal optical transitions between the uppermost spin-splitH4andH5and the degenerateH6valence bands (VB) and the lowest degenerateH6conduction band (CB) as well as a higher energy transition at the L-point. Surprisingly, the degeneracy of theH6CB (a proposed Weyl node) is lifted and the spin-split VB gap is reduced upon photoexcitation before relaxing to equilibrium as the carriers decay. Using ab initio density functional theory (DFT) calculations, we conclude that the dynamic band structure is caused by a photoinduced shear strain in the Te film that breaks the screw symmetry of the crystal. The band-edge anisotropy is also reflected in the hot carrier decay rate, which is a factor of two slower along the c-axis than perpendicular to it. The majority of photoexcited carriers near the band-edge are seen to recombine within 30 ps while higher lying transitions observed near 1.2 eV appear to have substantially longer lifetimes, potentially due to contributions of intervalley processes in the recombination rate. These new findings shed light on the strong correlation between photoinduced carriers and electronic structure in anisotropic crystals, which opens a potential pathway for designing novel Te-based devices that take advantage of the topological structures as well as strong spin-related properties.more » « less
- 
            Variable‐angle spectroscopic ellipsometry is used to determine the room temperature complex refractive index of molecular beam epitaxy grown GaSb1−xBixfilms withx ≤ 4.25% over a spectral range of 0.47–6.2 eV. By correlating to critical points in the extinction coefficientk, the energies of several interband transitions are extracted as functions of Bi content. The observed change in the fundamental bandgap energy (E0, −36.5 meV per %Bi) agrees well with previously published values; however, the samples examined here show a much more rapid increase in the spin‐orbit splitting energy (Δ0, +30.1 meV per Bi) than previous calculations have predicted. As in the related GaAsBi, the energy of transitions involving the top of the valence band are observed to have a much stronger dependence on Bi content than those that do not, suggesting the valence band maximum is most sensitive to Bi alloying. Finally, the effects of surface droplets on both the complex refractive index and the critical point energies are examined.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    