skip to main content


Title: Assimilation of Water Vapor Retrievals from ZDR Columns Using the 3DVar Method for Improving the Short-Term Prediction of Convective Storms
Abstract

The differential reflectivity (ZDR) column is a notable polarimetric signature related to updrafts in deep moist convection. In this study, pseudo–water vapor (qυ) observations are retrieved from observedZDRcolumns under the assumption that humidity is saturated within the convection whereZDRcolumns are detected, and are then assimilated within the 3DVar framework. The impacts of assimilating pseudo-qυobservations fromZDRcolumns on short-term severe weather prediction are first evaluated for a squall-line case. Radar data analysis indicates that theZDRcolumns are mainly located on the inflow side of the high-reflectivity region. Assimilation of the pseudo-qυobservations leads to an enhancement ofqυwithin the convection, while concurrently reducing humidity in no-rain areas. Sensitivity experiments indicate that a tuned smaller observation error and a shorter horizontal decorrelation scale are optimal for a better assimilation of pseudo-qυfromZDRcolumns, resulting in more stable rain rates during short-term forecasts. Additionally, a 15-min cycling assimilation frequency yields the best performance, providing the most accurate reflectivity forecast in terms of both location and intensity. Analysis of thermodynamic fields reveal that assimilatingZDRcolumns provides more favorable initial conditions for sustaining convection, including sustainable moisture condition, a strong cold pool, and divergent winds near the surface, consequently enhancing reflectivity and precipitation. With the optimal configuration determined from the sensitivity tests, a quantitative evaluation further demonstrates that assimilating the pseudo-qυobservations fromZDRcolumns using the 3DVar method can improve the 0–3-h reflectivity and accumulated precipitation predictions of convective storms.

 
more » « less
PAR ID:
10497280
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Monthly Weather Review
Volume:
152
Issue:
4
ISSN:
0027-0644
Format(s):
Medium: X Size: p. 1077-1095
Size(s):
p. 1077-1095
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Assimilating radar reflectivity into convective-scale NWP models remains a challenging topic in radar data assimilation. A primary reason is that the reflectivity forward observation operator is highly nonlinear. To address this challenge, a power transformation function is applied to the WRF Model’s hydrometeor and water vapor mixing ratio variables in this study. Three 3D variational data assimilation experiments are performed and compared for five high-impact weather events that occurred in 2019: (i) a control experiment that assimilates reflectivity using the original hydrometeor mixing ratios as control variables, (ii) an experiment that assimilates reflectivity using power-transformed hydrometeor mixing ratios as control variables, and (iii) an experiment that assimilates reflectivity and retrieved pseudo–water vapor observations using power-transformed hydrometeor and water vapor mixing ratios (qυ) as control variables. Both qualitative and quantitative evaluations are performed for 0–3-h forecasts from the five cases. The analysis and forecast performance in the two experiments with power-transformed mixing ratios is better than the control experiment. Notably, the assimilation of pseudo–water vapor with power-transformedqυas an additional control variable is found to improve the performance of the analysis and short-term forecasts for all cases. In addition, the convergence rate of the cost function minimization for the two experiments that use the power transformation is faster than that of the control experiments.

    Significance Statement

    The effective use of radar reflectivity observations in any data assimilation scheme remains an important research topic because reflectivity observations explicitly include information about hydrometeors and also implicitly include information about the distribution of moisture within storms. However, it is difficult to assimilate reflectivity because the reflectivity forward observation operator is highly nonlinear. This study seeks to identify a more effective way to assimilate reflectivity into a convective-scale NWP model to improve the accuracy of predictions of high-impact weather events.

     
    more » « less
  2. Abstract

    Precipitation plays an important role in cloud and aerosol processes over the Southern Ocean (SO). The main objective of this study is to characterize SO precipitation properties associated with SO stratocumulus clouds. We use data from the Southern Ocean Clouds Radiation Aerosol Transport Experimental Study (SOCRATES), and leverage observations from airborne radar, lidar, and in situ probes. We find that for the cold‐topped clouds (cloud‐top‐temperature <0°C), the phase of precipitation with reflectivity >0 dBZ is predominantly ice, while reflectivity < −10 dBZ is predominantly liquid. Liquid‐phase precipitation properties are retrieved where radar and lidar are zenith‐pointing. Power‐law relationships between reflectivity (Z) and rain rate (R) are developed, and the derived Z–R relationships show vertical dependence and sensitivity to the presence of droplets with diameters between 10 and 40 μm. Using derived Z–R relationships, a reflectivity‐velocity (ZV) retrieval method, and a radar‐lidar retrieval method, we derive rain rate and other precipitation properties. The retrieved rain rate from all three methods shows good agreement with in‐situ aircraft estimates, with rain rates typically being quite light (<0.1 mm hr−1). We examine the vertical distribution of precipitation properties, and find that rain rate, precipitation number concentration, and precipitation liquid water all decrease as one gets closer to the surface, while precipitation size and distribution width increases. We also examine how cloud base rain rate (RCB) depends on cloud depth (H) and aerosol concentration (Na) for particles with a diameter greater than 70 nm, and find thatRCBis proportional to .

     
    more » « less
  3. Abstract

    We demonstrate the utility of transient polarimetric signatures (ZDRandKDPcolumns, a proxy for surges in a thunderstorm updraft) to explain variability in lightning flash rates in a tornadic supercell. Observational data from a WSR-88D and the Oklahoma lightning mapping array are used to map the temporal variance of polarimetric signatures and VHF sources from lightning channels. It is shown, via three-dimensional and cross-sectional analyses, that the storm was of inverted polarity resulting from anomalous electrification. Statistical analysis confirms that mean flash area in theZDRcolumn region was 10 times smaller than elsewhere in the storm. On an average, 5 times more flash initiations occurred withinZDRcolumn regions, thereby supporting existing theory of an inverse relationship between flash initiation rates and lightning channel extent. Segmentation and object identification algorithms are applied to gridded radar data to calculate metrics such as height, width, and volume ofZDRandKDPcolumns. Variability in lightning flash rates is best explained by the fluctuations inZDRcolumn volume with a Spearman’s rank correlation coefficient value of 0.72. The highest flash rates occur in conjunction with the deepestZDRcolumns (up to 5 km above environmental melting level) and largest volumes ofZDRcolumns extending up to the −20°C level (3 km above the melting level). Reduced flash rates toward the end of the analysis are indicative of weaker updrafts manifested as lowZDRcolumn volumes at and above the −10°C level. These findings are consistent with recent studies linking lightning to the interplay between storm dynamics, kinematics, thermodynamics, and precipitation microphysics.

     
    more » « less
  4. ABSTRACT

    Remote sensing techniques have been used to study and track wildfire smoke plume structure and evolution; however, knowledge gaps remain because of the limited availability of observational datasets aimed at understanding fine-scale fire–atmosphere interactions and plume microphysics. Meteorological radars have been used to investigate the evolution of plume rise in time and space, but highly resolved plume observations are limited. In this study, we present a new mobile millimeter-wave (Ka band) Doppler radar system acquired to sample the fine-scale kinematics and microphysical properties of active wildfire smoke plumes from both wildfires and large prescribed fires. Four field deployments were conducted in autumn of 2019 during two wildfires in California and one prescribed burn in Utah. Radar parameters investigated in this study include reflectivity, radial velocity, Doppler spectrum width, differential reflectivityZDR, and copolarized correlation coefficientρHV. Observed radar reflectivity ranged between −15 and 20 dBZin plume, and radial velocity ranged from 0 to 16 m s−1. Dual-polarimetric observations revealed that scattering sources within wildfire plumes are primarily nonspherical and oblate-shaped targets as indicated byZDRvalues measuring above 0 andρHVvalues below 0.8 within the plume. Doppler spectrum width maxima were located near the updraft core region and were associated with radar reflectivity maxima.

     
    more » « less
  5. Abstract

    Microphysical and kinematic structures of major Hurricane Harvey's (2017) asymmetric eyewall are analyzed from ground‐based polarimetric and airborne Doppler radars. New polarimetric observations of differential reflectivity (ZDR) and specific differential phase (KDP) show asymmetric wavenumber‐1 patterns associated with vertical wind shear (VWS) but were shifted azimuthally with respect to the reflectivity (ZH) asymmetry. AZDRcolumn was found upwind of theZHmaximum in a region with strong updrafts estimated from multi‐Doppler synthesis, with higher values ofKDPfound cyclonically downwind. Retrieved raindrop size distributions show that azimuthal variations of size and number concentration were determined by both the VWS and the size sorting process. The diameter of raindrops decreases, while the number concentration increases cyclonically downwind of VWS‐induced updrafts due to the differential terminal fall speed of raindrops and strong rotational flow at major hurricane wind speeds.

     
    more » « less