skip to main content


Title: Supervised and Unsupervised Learning Models for Detection of Critical Heat Flux During Pool Boiling
Abstract

The rapid growth and scaling of electronics are causing more severe thermal management challenges. For example, the high-performance computing processors are driving the data center power density to unprecedented levels, approaching the limit of conventional air cooling. In electric vehicles (EVs) and hybrid EVs, the power conversion electronics are integrated into a compact space, leading to ultra-high heat fluxes to dissipate. Among the available thermal management mechanisms, two-phase cooling that involves the phase-change process of the working fluid can maintain electronic devices at safe operating temperatures by taking advantage of the high latent heat of the fluid. Particularly, pool boiling plays a critical role in the two-phase immersion cooling of servers and other IT hardware, integrated cooling for three-dimensional electronic packaging, cooling of the core, and used fuel in nuclear reactors. Two-phase coolers are limited by instabilities such as the critical heat flux (CHF). At the critical heat flux, the temperature increases. It is important to be able to identify the CHF in order to prevent overheating. We aim to develop and compare boiling image classification models to distinguish between 2 boiling regimes. We will leverage principal component analysis (PCA) and K-means clustering to investigate the key differences between bubbles during nucleate boiling (pre-CHF) and transition boiling (post-CHF). We will also compare the results of the unsupervised learning model against popular supervised learning models that have been used for boiling regime classification in existing studies, such as convolutional neural networks, multiplayer perceptrons, and transformers. We successfully created 4 supervised and 1 unsupervised learning models to distinguish between the two types of boiling images.

 
more » « less
Award ID(s):
1946391
NSF-PAR ID:
10497396
Author(s) / Creator(s):
; ;
Publisher / Repository:
American Society of Mechanical Engineers
Date Published:
Journal Name:
Journal of Electronic Imaging
Format(s):
Medium: X
Location:
Philadelphia, Pennsylvania, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Power intensification and miniaturization of electronics and energy systems are causing a critical challenge for thermal management. Single-phase heat transfer mechanisms including natural and forced convection of air and liquids cannot meet the ever-increasing demands. Two-phase heat transfer modes, such as evaporation, pool boiling, flow boiling, have much higher cooling capacities but are limited by a variety of practical instabilities, e.g., the critical heat flux (CHF), aka departure from nucleate boiling (DNB) in the nuclear industry, flow maldistribution, flow reversal, among others. These instabilities are often triggered suddenly during normal operation, and if not identified and mitigated in time, will lead to overheating issues and detrimental device failures. For example, when CHF is triggered during pool boiling, the device temperature can ramp up in the order of 150 °C/min. It is thus critical to implement real-time detection and mitigation algorithms for two-phase cooling. In the present work, we have developed an accurate and reliable technology for fault detection of high-performance two-phase cooling systems by coupling acoustic emission (AE) with multimodal fusion using deep learning. We have leveraged the contact AE sensor attached to the heater and hydrophones immersed in the working fluid to enable non-invasive fault detection.

     
    more » « less
  2. Abstract

    Jet impingement can be particularly effective for removing high heat fluxes from local hotspots. Two-phase jet impingement cooling combines the advantage of both the nucleate boiling heat transfer with the single-phase sensible cooling. This study investigates two-phase submerged jet impingement cooling of local hotspots generated by a diode laser in a 100 nm thick Hafnium (Hf) thin-film on glass. The jet/nozzle diameter is ∼1.2 mm and the normal distance between the nozzle outlet and the heated surface is ∼3.2 mm. Novec 7100 is used as the coolant and the Reynolds numbers at the jet nozzle outlet range from 250 to 5000. The hotspot area is ∼ 0.06 mm2 and the applied hotspot-to-jet heat flux ranges from 20 W/cm2 to 220 W/cm2. This heat flux range facilitates studies of both the single-phase and two-phase heat transport mechanisms for heat fluxes up to critical heat flux (CHF). The temporal evolution of the temperature distribution of the laser heated surface is measured using infrared (IR) thermometry. This study also investigates the nucleate boiling regime as a function of the distance between the hotspot center and the jet stagnation point. For example, when the hotspot center and the jet are co-aligned (x/D = 0), the CHF is found to be ∼ 177 W/cm2 at Re ∼ 5000 with a corresponding heat transfer coefficient of ∼58 kW/m2.K. While the CHF is ∼ 130 W/cm2 at Re ∼ 5000 with a jet-to-hotspot offset of x/D ≈ 4.2.

     
    more » « less
  3. We previously demonstrated how the Sn3Ag4Ti alloy can robustly bond onto silicon via selective laser melting (SLM). By employing this technology, thermal management devices (e.g., micro-channels, vapor chamber evaporators, heat pipes) can be directly printed onto the electronic package (silicon die) without using thermal interface materials. Under immersion two-phase cooling (pool boiling), we compare the performance of three chip cooling methods (conventional heat sink, bare silicon die and additively manufactured metal micro-fins) under high heat flux conditions (100 W/cm2 ). Heat transfer simulations show a significant reduction in the chip temperature for the silicon micro-fins. Reduction of the chip operating temperature or increase in clock speed are some of the advantages of this technology, which results from the elimination of thermal interface materials in the electronic package. Performance and reliability aspects of this technology are discussed through experiments and computational models. 
    more » « less
  4. Jet impingement can be particularly effective for removing high heat fluxes from local hotspots. Two-phase jet impingement cooling combines the advantages of both the nucleate boiling heat transfer with the single-phase sensible cooling. This study investigates two-phase confined jet impingement cooling of local, laser-generated hotspots in a 100 nm thick Hafnium (Hf) thin film on glass. The jet/nozzle diameter is ∼1.2 mm and the normal distance between the nozzle outlet and the heated surface is ∼3.2 mm. The jet coolants studied are FC 72, Novec 7200, and Ethanol with jet nozzle outlet Reynolds numbers ranging from 250 to 5000. The hotspot area is ∼0.06 mm2 and the applied hotspot-to-jet heat fluxes range from 20 W/cm2 to 350 W/cm2. This heat flux range facilitates studies of both the single-phase and two-phase heat transport mechanisms for heat fluxes up to critical heat flux (CHF). The temporal evolution of the temperature distribution of the laser-heated surface is measured using infrared (IR) thermometry. This study focuses on the stagnation point heat transfer - i.e., the jet potential core is co-aligned with the hotspot center. For ethanol, the CHF is ∼315 W/cm2 at Re ∼ 1338 with a corresponding heat transfer coefficient of h ∼ 102 kW/m2·K. For FC 72, the CHF is ∼94 W/cm2 at Re ∼ 5000 with a corresponding h ∼ 56 kW/m2·K. And for Novec 7200, the CHF is ∼108 W/cm2 at Re ∼ 4600 with a corresponding h ∼ 50 kW/m2·K. 
    more » « less
  5. Abstract

    Capillary‐fed boiling of water from microporous metal surfaces is promising for low thermal resistance vapor chamber heat spreaders for hot spot management. Vapor transport through the void spaces in porous metals enables high heat fluxes at low evaporator superheat. In this work, the critical heat fluxes of capillary‐fed boiling in copper inverse opal (IO) wicks that consist of uniform pores with 3D periodicity is investigated. Template sintering is used to enlarge the “necks”, or hydraulic vias, that bridge adjacent IO pores of diameters from 0.6 to 2.1 µm. The enhanced neck size increases the hydraulic permeability for vapor extraction by an order of magnitude, and subsequently the CHF from 100 to 1100 W cm−2. Modeling of the boiling limit accounts for the vapor pressure drop through an IO wick using Darcy's law at a given bubble departure rate. This work links the effect of wick structure design on the boiling crises phenomenon in microporous surfaces and demonstrates material capabilities for ultrathin and low superheat thermal management solutions for high‐power‐density electronic devices.

     
    more » « less