skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Novel Subcooled Boiling Chamber With Submerged Condensation for High Heat Flux Removal for Data Center Application
Electronic components, especially the CPUs/GPUs used in data centers are concentrated heat-generating sources. Their large Thermal Design Power (TDP), small die area and confined packaging make their thermal management a unique challenge. While conventional single-phase cooling methods fail to dissipate such large amounts of heat efficiently, recently developed two-phase cooling systems also lack the holistic approach of combining efficient boiling and condensation mechanisms. It is hypothesized that subcooled boiling with submerged condensation and reduced saturation pressure will result in high-heat flux dissipation while maintaining low surface temperatures. The novel boiling chamber presented in this work is demonstrated in a compact configuration that fits in a 1U/2U server rack by combining submerged condensation with subcooled pool boiling. The boiling chamber is filled with 13% and 40% fill ratio of water and Novec-7000 and experimentally investigated on a thermal test vehicle. Results show that the boiling chamber dissipates about 400 W of heat with a surface temperature of less than 80 °C using Novec-7000 working fluid. When tested with water, the device dissipated more than 750 W of heat (heat flux ≈ 67 W/cm2) with a surface temperature of less than 90 °C. Though the surface temperature rose to 120°C, further testing shows the device to dissipate more than 1 kW from a 34.5 × 32 mm2 plain copper chip. High-speed images identify submerged condensation and small diameters of vapor bubbles. Further enhancements can be achieved by implementing enhanced boiling and condensation surfaces. Lastly, a guide to design considerations and future work is provided to unlock the greater performance potential of the novel boiling chamber.  more » « less
Award ID(s):
2022614
PAR ID:
10583619
Author(s) / Creator(s):
;
Publisher / Repository:
IEEE
Date Published:
ISSN:
1936-3958
ISBN:
979-8-3503-6433-0
Page Range / eLocation ID:
1 to 10
Format(s):
Medium: X
Location:
Aurora, CO, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Jet impingement can be particularly effective for removing high heat fluxes from local hotspots. Two-phase jet impingement cooling combines the advantage of both the nucleate boiling heat transfer with the single-phase sensible cooling. This study investigates two-phase submerged jet impingement cooling of local hotspots generated by a diode laser in a 100 nm thick Hafnium (Hf) thin-film on glass. The jet/nozzle diameter is ∼1.2 mm and the normal distance between the nozzle outlet and the heated surface is ∼3.2 mm. Novec 7100 is used as the coolant and the Reynolds numbers at the jet nozzle outlet range from 250 to 5000. The hotspot area is ∼ 0.06 mm2 and the applied hotspot-to-jet heat flux ranges from 20 W/cm2 to 220 W/cm2. This heat flux range facilitates studies of both the single-phase and two-phase heat transport mechanisms for heat fluxes up to critical heat flux (CHF). The temporal evolution of the temperature distribution of the laser heated surface is measured using infrared (IR) thermometry. This study also investigates the nucleate boiling regime as a function of the distance between the hotspot center and the jet stagnation point. For example, when the hotspot center and the jet are co-aligned (x/D = 0), the CHF is found to be ∼ 177 W/cm2 at Re ∼ 5000 with a corresponding heat transfer coefficient of ∼58 kW/m2.K. While the CHF is ∼ 130 W/cm2 at Re ∼ 5000 with a jet-to-hotspot offset of x/D ≈ 4.2. 
    more » « less
  2. We previously demonstrated how the Sn3Ag4Ti alloy can robustly bond onto silicon via selective laser melting (SLM). By employing this technology, thermal management devices (e.g., micro-channels, vapor chamber evaporators, heat pipes) can be directly printed onto the electronic package (silicon die) without using thermal interface materials. Under immersion two-phase cooling (pool boiling), we compare the performance of three chip cooling methods (conventional heat sink, bare silicon die and additively manufactured metal micro-fins) under high heat flux conditions (100 W/cm2 ). Heat transfer simulations show a significant reduction in the chip temperature for the silicon micro-fins. Reduction of the chip operating temperature or increase in clock speed are some of the advantages of this technology, which results from the elimination of thermal interface materials in the electronic package. Performance and reliability aspects of this technology are discussed through experiments and computational models. 
    more » « less
  3. Abstract The rapid growth and scaling of electronics are causing more severe thermal management challenges. For example, the high-performance computing processors are driving the data center power density to unprecedented levels, approaching the limit of conventional air cooling. In electric vehicles (EVs) and hybrid EVs, the power conversion electronics are integrated into a compact space, leading to ultra-high heat fluxes to dissipate. Among the available thermal management mechanisms, two-phase cooling that involves the phase-change process of the working fluid can maintain electronic devices at safe operating temperatures by taking advantage of the high latent heat of the fluid. Particularly, pool boiling plays a critical role in the two-phase immersion cooling of servers and other IT hardware, integrated cooling for three-dimensional electronic packaging, cooling of the core, and used fuel in nuclear reactors. Two-phase coolers are limited by instabilities such as the critical heat flux (CHF). At the critical heat flux, the temperature increases. It is important to be able to identify the CHF in order to prevent overheating. We aim to develop and compare boiling image classification models to distinguish between 2 boiling regimes. We will leverage principal component analysis (PCA) and K-means clustering to investigate the key differences between bubbles during nucleate boiling (pre-CHF) and transition boiling (post-CHF). We will also compare the results of the unsupervised learning model against popular supervised learning models that have been used for boiling regime classification in existing studies, such as convolutional neural networks, multiplayer perceptrons, and transformers. We successfully created 4 supervised and 1 unsupervised learning models to distinguish between the two types of boiling images. 
    more » « less
  4. The increasing prevalence of high-performance computing data centers necessitates the adoption of cutting-edge cooling technologies to ensure the safe and reliable operation of their powerful microprocessors. Two-phase cooling schemes are well-suited for high heat flux scenarios because of their high heat transfer coefficients and their ability to enhance chip temperature uniformity. In this study, we perform experimental characterization and deep learning driven optimization of a commercial two-phase cold plate. The initial working design of the cold plate comprises a fin height of 3mm, fin thickness of 0.1 mm, and a channel width of 0.1 mm.A dielectric coolant, Novec /HFE 7000, was impinged into microchannel fins through impinging jets. A copper block simulated an electronic chip with a surface area of 1˝ × 1˝. The experiment was conducted with three different coolant inlet temperatures of 25◦ C, 36◦ C, and 48◦ C with varying heat flux levels ranging from 7.5 to 73.5 W cm2. The effects of coolant inlet temperatures and flow rate on the thermo-hydraulic performance of the cold plate were explored. In two-phase flow, increasing coolant inlet temperature results in more nucleation sites and improved thermal performance consequently. Thermal resistance drops with flow rate in single-phase flow while it is not affected by flow rate in nucleate boiling region. An improvement in the design of the cold plate was carried out, with the goal of increasing the number of bubble sites and flow velocity at the root fins, by cutting the original fins and creating channels perpendicular to the original channels. Three design parameters, fin height, width of machined channels, and height of short fins preserved through machined channels, were defined. It was observed that widening the machined channels and cutting fins to some point can improve the thermal performance of the cold plate. However, removing fins excessively adversely affects the thermal performance of the cold plate because of loss of heat transfer surface area. Moreover, preserving the short fins through the machined channels decreases thermal resistance as they increase heat transfer surface area and nucleation sites. Furthermore, a deep learning-based compact model is demonstrated for the two-phase cold plate design in the specific range of geometry and flow conditions. The developed compact model is utilized to drive the single and multi-objective optimization to arrive at global optimal results. 
    more » « less
  5. Abstract Power intensification and miniaturization of electronics and energy systems are causing a critical challenge for thermal management. Single-phase heat transfer mechanisms including natural and forced convection of air and liquids cannot meet the ever-increasing demands. Two-phase heat transfer modes, such as evaporation, pool boiling, flow boiling, have much higher cooling capacities but are limited by a variety of practical instabilities, e.g., the critical heat flux (CHF), aka departure from nucleate boiling (DNB) in the nuclear industry, flow maldistribution, flow reversal, among others. These instabilities are often triggered suddenly during normal operation, and if not identified and mitigated in time, will lead to overheating issues and detrimental device failures. For example, when CHF is triggered during pool boiling, the device temperature can ramp up in the order of 150 °C/min. It is thus critical to implement real-time detection and mitigation algorithms for two-phase cooling. In the present work, we have developed an accurate and reliable technology for fault detection of high-performance two-phase cooling systems by coupling acoustic emission (AE) with multimodal fusion using deep learning. We have leveraged the contact AE sensor attached to the heater and hydrophones immersed in the working fluid to enable non-invasive fault detection. 
    more » « less