The mission of this National Science Foundation Advanced Technological Education (NSF ATE) National Center is to cultivate and nurture partnerships with advanced manufacturing stakeholders, creating a national network throughout the United States to further develop a diverse technical workforce. National Center partners include collaborators from education, industry, government, and private and public organizations. Each member of the National Center’s leadership team is experienced in developing and maintaining a program for their specific advanced manufacturing discipline and provides expertise in partnerships providing benefits to both the program and the partner. Examples of the benefits include scholarships, instructor recruitment, work and learn programs, and national dissemination. The National Center has developed resources and best practices for fostering partnerships for community college advanced manufacturing programs, including unexpected collaborators.
According to a study by Deloitte and the Manufacturing Institute, “Over the next decade, 4 million manufacturing jobs will likely be needed, and 2.1 million are expected to go unfilled if we do not inspire more people to pursue modern manufacturing careers.” The National Center and its partners are working together to address the nation’s need for a pipeline of students equipped with the skills to pursue careers in advanced manufacturing with an emphasis on Industry 4.0 technologies. Building the pipeline requires many components that partnerships can help provide. This paper will provide best practices for developing and maintaining partnerships with various organizations at local, statewide, and national levels that have helped programs grow and overcome challenges to educate a diverse advanced manufacturing education workforce.
more »
« less
Materials Technology Education Processes and Outcomes: The MatEdU Program
The National Resource Center for Materials Technology Education (MatEdU) and its continuation program, the MatEdU Online Digital Library, has made major progress in areas related to education, technology training, inter-communication, and networking in materials technology. A significant impact of this National Science Foundation-funded Advanced Technological Education resource center has been implementing materials technology into multiple areas, from technology and electronics education to advanced manufacturing, energy materials, and critical materials utilization. Using its website as its centerpiece, workshops, and educational modules along with opportunities for undergraduate research and faculty mentoring at community colleges are available. Practical examples abound, including guitar building, additive manufacturing, and numerous types of advanced materials and applications. This paper provides the information future programs will need to build follow-up programs to enhance technology education further.
more »
« less
- Award ID(s):
- 2000281
- PAR ID:
- 10497405
- Publisher / Repository:
- Zenodo
- Date Published:
- Journal Name:
- Journal of advanced technological education
- Volume:
- 3
- Issue:
- 1
- ISSN:
- 2832-9635
- Subject(s) / Keyword(s):
- materials education technology workshops curricula mentoring networking
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The National Science Foundation Advanced Technological Education (NSF-ATE) program has grant funding opportunities available to support CTE and STEM technician program development. NSF-ATE grant funding opportunities are intended to help educators develop or improve their 2-year technician programs. Proposals may focus on program, curriculum, and educational materials development, program improvement, faculty professional development, teacher preparation, career pathways, outreach activities, undergraduate research experiences, internships, apprenticeships, and more. Partnerships with universities, colleges, and 7-12 institutions in support of workforce development are encouraged. Industry partnerships are essential for NSF-ATE projects. NSF-ATE supports Emerging Technologies and technologies such as Biotechnology, Engineering, Energy, Environmental, Agricultural, Advanced Manufacturing, Micro/Nano Technologies, Information, Security, and Geospatial. Multiple categories of NSF-ATE grant funding are available including Projects, Small Projects for Institutions New to ATE, Applied Research on Technician Education, National Centers, and Resource Centers. The new NSF-ATE solicitation (NSF 21-598) was released in 2021 and includes higher funding levels and multiple categories of grant funding opportunities, including a new Consortia for Innovations in Technician Education. NSF-ATE has some helpful resources for educators planning to develop or improve their courses or programs. Mentoring opportunities for grant proposal development are available through multiple projects such as Mentor-Connect, MNT-EC (Micro Nano Technology Education Center), Mentor Up, Project Vision, Pathways to Innovation, CCPISTEM, and FORCCE-ATE. Each of these projects has a unique approach and a different focus to help their mentees successfully submit NSF-ATE grant proposals.more » « less
-
The National Science Foundation Advanced Technological Education (NSF-ATE) program has grant funding opportunities available to support CTE and STEM technician program development. NSF-ATE grant funding opportunities are intended to help educators develop or improve their 2-year technician programs. Proposals may focus on program, curriculum, and educational materials development, program improvement, faculty professional development, teacher preparation, career pathways, outreach activities, undergraduate research experiences, internships, apprenticeships, and more. Partnerships with universities, colleges, and 7-12 institutions in support of workforce development are encouraged. Industry partnerships are essential for NSF-ATE projects. NSF-ATE supports Emerging Technologies and technologies such as Biotechnology, Engineering, Energy, Environmental, Agricultural, Advanced Manufacturing, Micro/Nano Technologies, Information, Security, and Geospatial. Multiple categories of NSF-ATE grant funding are available including Projects, Small Projects for Institutions New to ATE, Applied Research on Technician Education, National Centers, and Resource Centers. The new NSF-ATE solicitation (NSF 21-598) was released in 2021 and includes higher funding levels and multiple categories of grant funding opportunities, including a new Consortia for Innovations in Technician Education. NSF-ATE has some helpful resources for educators planning to develop or improve their courses or programs. Mentoring opportunities for grant proposal development are available through multiple projects such as Mentor-Connect, MNT-EC (Micro Nano Technology Education Center), Mentor Up, Project Vision, Pathways to Innovation, CCPISTEM, and FORCCE-ATE. Each of these projects has a unique approach and a different focus to help their mentees successfully submit NSF-ATE grant proposals.more » « less
-
Research shows that there is a growing need for skilled workers in the area of advanced manufacturing; this refers to making use of new technologies and advanced processes to produce products that have high value. More importantly, U.S. government employment data reveals that there is lack of supply of skilled workers in the manufacturing sector. Furthermore, it has also been widely cited in industrial literature that there is a concern regarding the job readiness of fresh college graduates and the gaps in skills sets needed to be successful in an industrial setting, especially in the engineering or manufacturing fields. One approach to bridge the skills gap is to provide customized continuing education to current the workforce as per the industry need. This paper presents a case study of such customized continuing education offered by Texas A&M University for oil and gas industry in Houston, Texas. Specifically, as a part of National Science Foundation Advanced Technological Education project, two professional development sessions were organized in the summer of 2018 in Houston targeting the energy industry. Both programs were two-days long and focused on two key aspects of high value manufacturing: manufacturing operations excellence and manufacturing quality excellence. The professional development sessions were focused on materials and inventory planning, production economics, manufacturing quality, non-destructive evaluation, statistical process control, and lean/ sixsigma. The continuing education programs and course materials were developed based on the feedback from the industry advisory board for the Manufacturing Center of Excellence at Houston Community College, which is a collaborating partner on the ATE Grant. As a part of assessment of the programs, industry participants in the both sessions were given comprehensive surveys asking for their feedback on the applicability of the educational sessions. Overall, the participants rated the sessions very highly on the organization and the relevancy of the program topics and learning materials. The participants also felt that they learned new information through these programs.more » « less
-
ASEE Manufacturing Division (Ed.)The manufacturing workspace and the technician workforce that supports that space tomorrow is an important issue to deal with today. As Industry 4.0 is absorbed into manufacturing facilities around the country, engineering technicians working in these facilities adjust to make tomorrow today. The National Science Foundation has supported the Florida Advanced Technological Education Center (FLATE) contiguously since 2004. FLATE's intent is to craft a manufacturing workforce that makes Florida manufacturers globally competitive. FLATE crafted and the Florida Department of Education now supported two-year Engineering Technology degree (A.S. ET) is the vehicle for manufacturing education in Florida. The degree is offered in over 85% of the colleges in the Florida College System (FCS) and has over 2,000 students enrolled statewide. The current NSF-supported project is to conduct an I4.0-focused Caucus of manufacturers and ET degree college faculty to collectively identify skill issues that will affect manufacturing production efficiency and product reliability. The project team initially used the nine Industry 4.0 (I4.0) technology areas identified by the Boston Consulting Group and selected four that will directly impact starting technicians working in companies that are already implementing Industry 4.0 technologies: (1) Autonomous Robots, (2) Simulation, (3) Industrial Internet of Things and (4) Additive/Subtractive Manufacturing and Advanced Materials. Technician skills are defined as those needed to set up, operate, troubleshoot, and maintain production and process equipment. Specific skills that fall in the I4.0 technologies identified as relevant for starting technicians were defined to be those that will be needed in the next 3-5 years. Initial questionnaire responses and subsequent data analysis detail are provided. Identified skills gaps as recognized by the manufacturers and faculty are provided and discussed.more » « less