skip to main content


This content will become publicly available on March 1, 2025

Title: ATE Assessment Practices: Reconceptualizing the Role of Participants in Professional Development Evaluation
Research shows formative assessments substantially strengthen learning and support summative assessment/evaluation practices. These practices are not widely applied in ATE's professional development (PD) efforts. This study focuses on participant teachers' assessment involvement to increase student learning and enhance outcome evaluations. We surveyed all principal investigators of ATE projects in 2022 who applied assessments in their 2021 PD efforts (N=70). Findings show that a minority of PD efforts apply formative assessment practices to strengthen PD outcomes or meet ATE's evaluation specifications. Assessment practices were most prevalent for summative purposes at the close of PD activity; a large majority assessed teachers' interest and learning in the PD and their intentions to use and teach what was learned on return to their classrooms. A third or less followed up to assess outcomes in teachers' schools. Similarly, thirty percent or less addressed matters of context at any stage of the PD efforts, and a few, 11 percent, followed up to assess the context in the schools. Concomitantly, the findings show where and how attention to formative assessment in the PD learning process can increase teacher involvement in assessment practices, making PD instruction more effective and strengthening outcome evaluations in participant teachers' home classrooms.  more » « less
Award ID(s):
2000281
NSF-PAR ID:
10497406
Author(s) / Creator(s):
; ;
Publisher / Repository:
Zenodo
Date Published:
Journal Name:
Journal of advanced technological education
Volume:
3
Issue:
1
ISSN:
2832-9635
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Unlike summative assessment that is aimed at grading students at the end of a unit or academic term, formative assessment is assess- ment for learning, aimed at monitoring ongoing student learning to provide feedback to both student and teacher, so that learning gaps can be addressed during the learning process. Education research points to formative assessment as a crucial vehicle for improving student learning. Formative assessment in K-12 CS and program- ming classrooms remains a crucial unaddressed need. Given that assessment for learning is closely tied to teacher pedagogical con- tent knowledge, formative assessment literacy needs to also be a topic of CS teacher PD. This position paper addresses the broad need to understand formative assessment and build a framework to understand the what, why, and how of formative assessment of introductory programming in K-12 CS. It shares specific pro- gramming examples to articulate the cycle of formative assessment, diagnostic evaluation, feedback, and action. The design of formative assessment items is informed by CS research on assessment design, albeit related largely to summative assessment and in CS1 contexts, and learning of programming, especially student misconceptions. It describes what teacher formative assessment literacy PD should entail and how to catalyze assessment-focused collaboration among K-12 CS teachers through assessment platforms and repositories. 
    more » « less
  2. Our research, Landscapes of Deep Time in the Red Earth of France (NSF International Research Experience for Students project), aims to mentor U.S. undergraduate science students from underserved populations (e.g. students of Native American heritage and/or first-generation college students) in geological research. During the first field season (June 2018) formative and summative assessments (outlined below) will be issued to assist in our evaluation of student learning. The material advancement of a student's sedimentological skillsets and self-efficacy development in research applications are a direct measure of our program's success. (1) Immediately before and after the program, students will self-rank their competency of specific skillsets (e.g. data collection, lithologic description, use of field equipment) in an anonymous summative assessment. (2) Formative assessments throughout the field season (e.g. describing stratigraphic section independently, oral and written communication of results) will assess improved comprehension of the scientific process. (3) An anonymous attitudinal survey will be issued at the conclusion of the field season to shed light on the program's quality as a whole, influence on student desire to pursue a higher-level degree/career in STEM, and effectiveness of the program on aiding the development of participant confidence and self-efficacy in research design and application. We discuss herein the results of first-year assessments with a focus on strategies for improvement. We expect each individual's outcomes to differ depending on his/her own characteristics and background. Furthermore, some of the most valued intentions of this experience are inherently difficult to measure (e.g., improved understanding of the scientific process, a stimulated passion to pursue a STEM career). We hope to address shortcomings in design; e.g. Where did we lose visibility on certain aspects of the learning experience? How can we revise the format and content of our assessment to better evaluate student participants and improve our program in subsequent years? 
    more » « less
  3. null (Ed.)
    As our nation’s need for engineering professionals grows, a sharp rise in P-12 engineering education programs and related research has taken place (Brophy, Klein, Portsmore, & Rogers, 2008; Purzer, Strobel, & Cardella, 2014). The associated research has focused primarily on students’ perceptions and motivations, teachers’ beliefs and knowledge, and curricula and program success. The existing research has expanded our understanding of new K-12 engineering curriculum development and teacher professional development efforts, but empirical data remain scarce on how racial and ethnic diversity of student population influences teaching methods, course content, and overall teachers’ experiences. In particular, Hynes et al. (2017) note in their systematic review of P-12 research that little attention has been paid to teachers’ experiences with respect to racially and ethnically diverse engineering classrooms. The growing attention and resources being committed to diversity and inclusion issues (Lichtenstein, Chen, Smith, & Maldonado, 2014; McKenna, Dalal, Anderson, & Ta, 2018; NRC, 2009) underscore the importance of understanding teachers’ experiences with complementary research-based recommendations for how to implement engineering curricula in racially diverse schools to engage all students. Our work examines the experiences of three high school teachers as they teach an introductory engineering course in geographically and distinctly different racially diverse schools across the nation. The study is situated in the context of a new high school level engineering education initiative called Engineering for Us All (E4USA). The National Science Foundation (NSF) funded initiative was launched in 2018 as a partnership among five universities across the nation to ‘demystify’ engineering for high school students and teachers. The program aims to create an all-inclusive high school level engineering course(s), a professional development platform, and a learning community to support student pathways to higher education institutions. An introductory engineering course was developed and professional development was provided to nine high school teachers to instruct and assess engineering learning during the first year of the project. This study investigates participating teachers’ implementation of the course in high schools across the nation to understand the extent to which their experiences vary as a function of student demographic (race, ethnicity, socioeconomic status) and resource level of the school itself. Analysis of these experiences was undertaken using a collective case-study approach (Creswell, 2013) involving in-depth analysis of a limited number of cases “to focus on fewer "subjects," but more "variables" within each subject” (Campbell & Ahrens, 1998, p. 541). This study will document distinct experiences of high school teachers as they teach the E4USA curriculum. Participants were purposively sampled for the cases in order to gather an information-rich data set (Creswell, 2013). The study focuses on three of the nine teachers participating in the first cohort to implement the E4USA curriculum. Teachers were purposefully selected because of the demographic makeup of their students. The participating teachers teach in Arizona, Maryland and Tennessee with predominantly Hispanic, African-American, and Caucasian student bodies, respectively. To better understand similarities and differences among teaching experiences of these teachers, a rich data set is collected consisting of: 1) semi-structured interviews with teachers at multiple stages during the academic year, 2) reflective journal entries shared by the teachers, and 3) multiple observations of classrooms. The interview data will be analyzed with an inductive approach outlined by Miles, Huberman, and Saldaña (2014). All teachers’ interview transcripts will be coded together to identify common themes across participants. Participants’ reflections will be analyzed similarly, seeking to characterize their experiences. Observation notes will be used to triangulate the findings. Descriptions for each case will be written emphasizing the aspects that relate to the identified themes. Finally, we will look for commonalities and differences across cases. The results section will describe the cases at the individual participant level followed by a cross-case analysis. This study takes into consideration how high school teachers’ experiences could be an important tool to gain insight into engineering education problems at the P-12 level. Each case will provide insights into how student body diversity impacts teachers’ pedagogy and experiences. The cases illustrate “multiple truths” (Arghode, 2012) with regard to high school level engineering teaching and embody diversity from the perspective of high school teachers. We will highlight themes across cases in the context of frameworks that represent teacher experience conceptualizing race, ethnicity, and diversity of students. We will also present salient features from each case that connect to potential recommendations for advancing P-12 engineering education efforts. These findings will impact how diversity support is practiced at the high school level and will demonstrate specific novel curricular and pedagogical approaches in engineering education to advance P-12 mentoring efforts. 
    more » « less
  4. null (Ed.)
    The Covid-19 pandemic has offered new challenges and opportunities for teaching and research. It has forced constraints on in-person gathering of researchers, teachers, and students, and conversely, has also opened doors to creative instructional design. This paper describes a novel approach to designing an online, synchronous teacher professional development (PD) and curriculum co-design experience. It shares our work in bringing together high school teachers and researchers in four US states. The teachers participated in a 3-week summer PD on ideas of Distributed Computing and how to teach this advanced topic to high school students using NetsBlox, an extension of the Snap! block-based programming environment. The goal of the PD was to prepare teachers to engage in collaborative co-design of a 9-week curricular module for use in classrooms and schools. Between their own training and the co-design process, teachers co-taught a group of high school students enrolled in a remote summer internship at a university in North Carolina to pilot the learned units and leverage ideas from their teaching experience for subsequent curricular co-design. Formative and summative feedback from teachers suggest that this PD model was successful in meeting desired outcomes. Our generalizable FIRST principles—Flexibility, Innovativeness, Responsiveness (and Respect), Supports, and Teamwork (collaboration)—that helped make this unique PD successful, can help guide future CS teacher PD designs. 
    more » « less
  5. Evidence has shown that facilitating student-centered learning (SCL) in STEM classrooms enhances student learning and satisfaction [1]–[3]. However, despite increased support from educational and government bodies to incorporate SCL practices [1], minimal changes have been made in undergraduate STEM curriculum [4]. Faculty often teach as they were taught, relying heavily on traditional lecture-based teaching to disseminate knowledge [4]. Though some faculty express the desire to improve their teaching strategies, they feel limited by a lack of time, training, and incentives [4], [5]. To maximize student learning while minimizing instructor effort to change content, courses can be designed to incorporate simpler, less time-consuming SCL strategies that still have a positive impact on student experience. In this paper, we present one example of utilizing a variety of simple SCL strategies throughout the design and implementation of a 4-week long module. This module focused on introductory tissue engineering concepts and was designed to help students learn foundational knowledge within the field as well as develop critical technical skills. Further, the module sought to develop important professional skills such as problem-solving, teamwork, and communication. During module design and implementation, evidence-based SCL teaching strategies were applied to ensure students developed important knowledge and skills within the short timeframe. Lectures featured discussion-based active learning exercises to encourage student engagement and peer collaboration [6]–[8]. The module was designed using a situated perspective, acknowledging that knowing is inseparable from doing [9], and therefore each week, the material taught in the two lecture sessions was directly applied to that week’s lab to reinforce students’ conceptual knowledge through hands-on activities and experimental outcomes. Additionally, the majority of assignments served as formative assessments to motivate student performance while providing instructors with feedback to identify misconceptions and make real-time module improvements [10]–[12]. Students anonymously responded to pre- and post-module surveys, which focused on topics such as student motivation for enrolling in the module, module expectations, and prior experience. Students were also surveyed for student satisfaction, learning gains, and graduate student teaching team (GSTT) performance. Data suggests a high level of student satisfaction, as most students’ expectations were met, and often exceeded. Students reported developing a deeper understanding of the field of tissue engineering and learning many of the targeted basic lab skills. In addition to hands-on skills, students gained confidence to participate in research and an appreciation for interacting with and learning from peers. Finally, responses with respect to GSTT performance indicated a perceived emphasis on a learner-centered and knowledge/community-centered approaches over assessment-centeredness [13]. Overall, student feedback indicated that SCL teaching strategies can enhance student learning outcomes and experience, even over the short timeframe of this module. Student recommendations for module improvement focused primarily on modifying the lecture content and laboratory component of the module, and not on changing the teaching strategies employed. The success of this module exemplifies how instructors can implement similar strategies to increase student engagement and encourage in-depth discussions without drastically increasing instructor effort to re-format course content. Introduction. 
    more » « less