Abstract The changing thermal state of permafrost is an important indicator of climate change in northern high latitude ecosystems. The seasonally thawed soil active layer thickness (ALT) overlying permafrost may be deepening as a consequence of enhanced polar warming and widespread permafrost thaw in northern permafrost regions (NPRs). The associated increase in ALT may have cascading effects on ecological and hydrological processes that impact climate feedback. However, past NPR studies have only provided a limited understanding of the spatially continuous patterns and trends of ALT due to a lack of long-term high spatial resolution ALT data across the NPR. Using a suite of observational biophysical variables and machine learning (ML) techniques trained with availablein situALT network measurements (n= 2966 site-years), we produced annual estimates of ALT at 1 km resolution over the NPR from 2003 to 2020. Our ML-derived ALT dataset showed high accuracy (R2= 0.97) and low bias when compared within situALT observations. We found the ALT distribution to be most strongly affected by local soil properties, followed by topographic elevation and land surface temperatures. Pair-wise site-level evaluation between our data-driven ALT with Circumpolar Active Layer Monitoring data indicated that about 80% of sites had a deepening ALT trend from 2003 to 2020. Based on our long-term gridded ALT data, about 65% of the NPR showed a deepening ALT trend, while the entire NPR showed a mean deepening trend of 0.11 ± 0.35 cm yr−1[25%–75% quantile: (−0.035, 0.204) cm yr−1]. The estimated ALT trends were also sensitive to fire disturbance. Our new gridded ALT product provides an observationally constrained, updated understanding of the progression of thawing and the thermal state of permafrost in the NPR, as well as the underlying environmental drivers of these trends.
more »
« less
Canopy cover and microtopography control precipitation-enhanced thaw of ecosystem-protected permafrost
Abstract Northern high-latitudes are projected to get warmer and wetter, which will affect rates of permafrost thaw and mechanisms by which thaw occurs. To better understand the impact of rain, as well as other factors such as snow depth, canopy cover, and microtopography, we instrumented a degrading permafrost plateau in south-central Alaska with high-resolution soil temperature sensors. The site contains ecosystem-protected permafrost, which persists in unfavorable climates due to favorable ecologic conditions. Our study (2020–2022) captured three of the snowiest years and three of the four wettest years since the site was first studied in 2015. Average thaw rates along an across-site transect increased nine-fold from 6 ± 5 cm yr−1(2015–2020) to 56 ± 12 cm yr−1(2020–2022). This thaw was not uniform. Hummock locations, residing on topographic high points with relatively dense canopy, experienced only 8 ± 9 cm yr−1of thaw, on average. Hollows, topographic low points with low canopy cover, and transition locations, which had canopy cover and elevation between hummocks and hollows, thawed 44 ± 6 cm yr−1and 39 ± 13 cm yr−1, respectively. Mechanisms of thaw differed between these locations. Hollows had high warm-season soil moisture, which increased thermal conductivity, and deep cold-season snow coverage, which insulated soil. Transition locations thawed primarily due to thermal energy transported through subsurface taliks during individual rain events. Most increases in depth to permafrost occurred below the ∼45 cm thickness seasonally frozen layer, and therefore, expanded existing site taliks. Results highlight the importance of canopy cover and microtopography in controlling soil thermal inputs, the ability of subsurface runoff from individual rain events to trigger warming and thaw, and the acceleration of thaw caused by consecutive wet and snowy years. As northern high-latitudes become warmer and wetter, and weather events become more extreme, the importance of these controls on soil warming and thaw is likely to increase.
more »
« less
- PAR ID:
- 10497463
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Environmental Research Letters
- Volume:
- 19
- Issue:
- 4
- ISSN:
- 1748-9326
- Format(s):
- Medium: X Size: Article No. 044055
- Size(s):
- Article No. 044055
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Permafrost formation and degradation creates a highly patchy mosaic of boreal peatland ecosystems in Alaska driven by climate, fire, and ecological changes. To assess the biophysical factors affecting permafrost dynamics, we monitored permafrost and ecological conditions in central Alaska from 2005 to 2021 by measuring weather, land cover, topography, thaw depths, hydrology, soil properties, soil thermal regimes, and vegetation cover between burned (1990 fire) and unburned terrain. Climate data show large variations among years with occasional, extremely warm–wet summers and cold–snowless winters that affect permafrost stability. Microtopography and thaw depth surveys revealed both permafrost degradation and aggradation. Thaw depths were deeper in post-fire scrub compared to unburned black spruce and increased moderately during the last year, but analysis of historical imagery (1954–2019) revealed no increase in thermokarst rates due to fire. Recent permafrost formation was observed in older bogs due to an extremely cold–snowless winter in 2007. Soil sampling found peat extended to depths of 1.5–2.8 m with basal radiocarbon dates of ~5–7 ka bp, newly accumulating post-thermokarst peat, and evidence of repeated episodes of permafrost formation and degradation. Soil surface temperatures in post-fire scrub bogs were ~1 °C warmer than in undisturbed black spruce bogs, and thermokarst bogs and lakes were 3–5 °C warmer than black spruce bogs. Vegetation showed modest change after fire and large transformations after thermokarst. We conclude that extreme seasonal weather, ecological succession, fire, and a legacy of earlier geomorphic processes all affect the repeated formation and degradation of permafrost, and thus create a highly patchy mosaic of ecotypes resulting from widely varying ecological trajectories within boreal peatland ecosystems.more » « less
-
Abstract. Arctic warming and permafrost degradation are modifying northernecosystems through changes in microtopography, soil water dynamics, nutrientavailability, and vegetation succession. Upon permafrost degradation, therelease of deep stores of nutrients, such as nitrogen and phosphorus, fromnewly thawed permafrost stimulates Arctic vegetation production. Morespecifically, wetter lowlands show an increase in sedges (as part ofgraminoids), whereas drier uplands favor shrub expansion. These shifts inthe composition of vegetation may influence local mineral element cyclingthrough litter production. In this study, we evaluate the influence ofpermafrost degradation on mineral element foliar stocks and potential annualfluxes upon litterfall. We measured the foliar elemental composition (Al,Ca, Fe, K, Mn, P, S, Si, and Zn) of ∼ 500 samples of typicaltundra plant species from two contrasting Alaskan tundra sites, i.e., anexperimental sedge-dominated site (Carbon in Permafrost Experimental Heating Research, CiPEHR) and natural shrub-dominated site(Gradient). The foliar concentration of these mineral elements was species specific, with sedge leaves having relatively high Si concentration andshrub leaves having relatively high Ca and Mn concentrations. Therefore,changes in the species biomass composition of the Arctic tundra in responseto permafrost thaw are expected to be the main factors that dictate changesin elemental composition of foliar stocks and maximum potential foliarfluxes upon litterfall. We observed an increase in the mineral elementfoliar stocks and potential annual litterfall fluxes, with Si increasingwith sedge expansion in wetter sites (CiPEHR), and Ca and Mn increasing withshrub expansion in drier sites (Gradient). Consequently, we expect thatsedge and shrub expansion upon permafrost thaw will lead to changes inlitter elemental composition and therefore affect nutrient cycling acrossthe sub-Arctic tundra with potential implications for further vegetationsuccession.more » « less
-
Abstract In 2007, the Anaktuvuk River fire burned more than 1000 km2of arctic tundra in northern Alaska, ~ 50% of which occurred in an area with ice-rich syngenetic permafrost (Yedoma). By 2014, widespread degradation of ice wedges was apparent in the Yedoma region. In a 50 km2area, thaw subsidence was detected across 15% of the land area in repeat airborne LiDAR data acquired in 2009 and 2014. Updating observations with a 2021 airborne LiDAR dataset show that additional thaw subsidence was detected in < 1% of the study area, indicating stabilization of the thaw-affected permafrost terrain. Ground temperature measurements between 2010 and 2015 indicated that the number of near-surface soil thawing-degree-days at the burn site were 3 × greater than at an unburned control site, but by 2022 the number was reduced to 1.3 × greater. Mean annual ground temperature of the near-surface permafrost increased by 0.33 °C/yr in the burn site up to 7-years post-fire, but then cooled by 0.15 °C/yr in the subsequent eight years, while temperatures at the control site remained relatively stable. Permafrost cores collected from ice-wedge troughs (n = 41) and polygon centers (n = 8) revealed the presence of a thaw unconformity, that in most cases was overlain by a recovered permafrost layer that averaged 14.2 cm and 18.3 cm, respectively. Taken together, our observations highlight that the initial degradation of ice-rich permafrost following the Anaktuvuk River tundra fire has been followed by a period of thaw cessation, permafrost aggradation, and terrain stabilization.more » « less
-
Investigating Thaw and Plant Productivity Constraints on Old Soil Carbon Respiration From PermafrostAbstract Isotopic radiocarbon (Δ14C) signatures of ecosystem respiration (Reco) can identify old soil carbon (C) loss and serve as an early indicator of permafrost destabilization in a warming climate. Warming also stimulates plant productivity causing plant respiration to dominate Reco Δ14C signatures and potentially obscuring old soil C loss. Here, we investigate how a wide spatio‐temporal gradient of permafrost thaw and plant productivity affects Reco Δ14C patterns and isotopic partitioning. Spatial gradients came from a warming experiment with doubling thaw depth and variable biomass, and a vegetation removal manipulation to eliminate plant contributions. We sampled in August and September to capture transitions from high to low plant productivity, decreased surface soil temperature, and relatively small seasonal thaw extensions. We found that surface processes dominate spatial variation in old soil C loss and a process‐based partitioning approach was crucial for constraining old soil C loss. Resampling the same plots in different times of the year revealed that old soil C losses tripled with cooling surface temperature, and the largest old soil C losses were detected when the organic‐to‐mineral soil horizons thawed (∼50–60 cm). We suggest that the measured increase in old soil respiration over the season and when the organic‐to‐mineral horizon thawed, may be explained by mobilization of nitrogen that stimulates microbial decomposition at depth. Our results suggest that soil C in the organic to mineral horizon may be an important source of soil C loss as the entire Arctic region warms and could lead to nonlinearities in projected permafrost climate feedbacks.more » « less