skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Manufacturing supported loose-nanofiltration polymeric membranes with eco-friendly solvents on an R2R System
Abstract In this study, loose nanofiltration membranes made of polysulfone dissolved in co-solvents PolarClean and gamma-Valerolactone were prepared via slot die coating (SDC) on a roll-to-roll (R2R) system by directly coating them onto a support layer or free standing. A solution flow rate of 20 mL/min, substrate speed of 17.1 mm/s, and coating gap of 0.1 mm resulted in the formation of membranes without structural defects. Pre-wetting the support layer with dope solution minimized shrinkage of membrane layer thickness and improved interfacial adhesion. Membrane samples produced using SDC exhibited properties and performance consistent with bench-scale doctor blade extruded samples; pre-wetted and uncompressed samples (SDC-3) exhibited the highest rejection of bovine serum albumin (99.20% ± 1.31%) and along with adequate mean permeability during filtration (70.5 ± 8.33 LMH/bar). This study shows that combining sustainable materials development with SDC provides a holistic approach to membrane separations to bridge materials discovery and membrane formation.  more » « less
Award ID(s):
2121674
PAR ID:
10497524
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
npj Clean Water
Volume:
7
Issue:
1
ISSN:
2059-7037
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Despite the emergence of eco-friendly solvents and scalable methods for polymeric membrane fabrication, studies on the impacts of solvent synthesis and manufacturing scale-up have not been conducted. To this end, a life cycle assessment (LCA) was developed with the goal of determining the global environmental and health impacts of producing polysulfone (PSf) membranes with the solvents PolarClean and γ-valerolactone (GVL) via doctor blade extrusion (DBE) and slot die coating (SDC). Along with PolarClean and GVL, dimethylacetamide (DMAc) and N-methyl-2-pyyrolidone (NMP) were included in the LCA as conventional solvents for comparison. The dope solution viscosity had a major influence on the material inventories; to produce a normalized membrane unit on a surface area basis, a larger quantity of PSf-PolarClean-GVL materials was required due to its high viscosity. The life cycle impact assessment found electricity and PolarClean to be major contributing parameters to multiple impact categories during membrane fabrication. The commercial synthesis route of PolarClean selected in this study required hazardous materials derived from petrochemicals, which increased its impact on membrane fabrication. Due to more materials being required to fabricate membranes via SDC to account for tool fluid priming, the PSf-PolarClean-GVL membrane fabricated via SDC exhibited the highest impacts. The amount of electricity and concentration of PolarClean were the most sensitive parameters according to Spearman’s rank coefficient analysis. A scenario analysis in which the regional energy grid was substituted found that using the Swedish grid, which comprises far more renewable technologies than the global and US energy grids, significantly lowered impacts in most categories. Despite the reported eco-friendly benefits of using PolarClean and GVL as alternatives to conventional organic solvents, the results in this study provide a wider perspective of membrane fabrication process impacts, highlighting that upstream impacts can counterbalance the beneficial properties of alternative materials. 
    more » « less
  2. Tarabra, V (Ed.)
    Thin-film-composite (TFC) nanofiltration membranes represent the pinnacle of membrane technology in water treatment and desalination. These membranes typically consist of a polyamide (PA) selective layer and a membrane support layer, often constructed from commercially available materials like polyethersulfone (PES). However, there exists an alternative approach that involves the use of different polymers, preferably upcycled waste polymers, as a viable support layer for TFC membranes. Successfully implementing the upcycling of waste plastics into high-value support membranes can make a significant contribution to addressing the issue of plastic waste pollution. One of the primary challenges associated with utilizing upcycled polymers as support layers is the potential impact on the polyamide selective layer of TFC membranes, subsequently affecting their performance in terms of permeability, rejection, and antifouling properties. In this study, we demonstrate the successful fabrication of TFC membranes with a support layer crafted from upcycled waste PVC pipe. We conducted a comprehensive investigation into the effects of upcycled PVC on the structural and physicochemical properties of the polyamide layer. The ultrafiltration (UF) support membranes were fabricated from waste PVC pipe via the nonsolvent induced phase separation (NIPS) method. Subsequently, a polyamide layer was synthesized atop the Upcycled PVC membrane using interfacial polymerization (IP). The physicochemical properties and performance of the TFC membranes with upcycled PVC support layer were compared with membranes with research-grade (RG) PVC and commercial PES support layers. The results unveiled that the TFC membrane with upcycled PVC support layer exhibited higher water permeability (18.2 LMH/bar), in contrast to RG TFC (15.5 LMH/bar) and PES TFC membranes (13.7 LMH/bar). Furthermore, the salt rejection capabilities of the upcycled PVC TFC membrane were competitive and well within an acceptable range. 
    more » « less
  3. Affordable thin-film composite (TFC) membranes are a potential alternative to more expensive ion exchange membranes in saltwater electrolyzers used for hydrogen gas production. We used a solution-friction transport model to study how the induced potential gradient controls ion transport across the polyamide (PA) active layer and support layers of TFC membranes during electrolysis. The set of parameters was simplified by assigning the same size-related partition and friction coefficients for all salt ions through the membrane active layer. The model was fit to experimental ion transport data from saltwater electrolysis with 600 mM electrolytes at 10 mA cm–2. When the electrolyte concentration and current density were increased, the transport of major charge carriers was successfully predicted by the model. Ion transport calculated using the model only minimally changed when the negative active layer charge density was varied from 0 to 600 mM, indicating active layer charge was not largely responsible for controlling ion crossover during electrolysis. Based on model simulations, a sharp pH gradient was predicted to occur within the supporting layer of the membrane. These results can help guide membrane design and operation conditions in water electrolyzers using TFC membranes. 
    more » « less
  4. Single layer graphene oxide (SLGO) was studied as a novel coating material to drastically improve the antifouling performance of polyether sulfone (PES) hollow fiber (HF) membranes in membrane bioreactor (MBR) application. By selectively modifying the membrane surface, only a small amount of SLGO coating (6.2 mg m −2 ) was needed to achieve acceptable membrane performance. The UV treatment of the SLGO coating further assisted in improving the antifouling properties of the as-prepared PES HF membranes. By comparing the transmembrane pressure of pristine PES HF and PES_GO 6.20_ UV X (X = 0–1.5 h) membranes in a MBR for wastewater treatment at a fixed water flux, the PES_GO 6.20_ UV 1.0 membrane coated with 1 h UV-treated SLGO was demonstrated to substantially relieve the bio-fouling problem. To understand the influence of SLGO modification on membrane performance, FESEM, ATR-FTIR, and AFM analyses were conducted to characterize the as-prepared membranes, and the SLGO deposition mechanism was also proposed in this study. 
    more » « less
  5. In this study, hydrophilic silica nanoparticles (Si NPs) were used to modify α-alumina tubular membranes to improve their performance in terms of flux, oil rejection, and anti-fouling properties. Our work focuses on enhancing membrane performance, particularly for difficult applications such as produced water treatment. The prepared membranes were applied for oil-in-water emulsion treatment. After coating hydrophilic Si NPs, the oil contact angle improved from 133.8° to 171.4°. To prevent Si NPs from leaching off the surface of α-alumina tubular membranes, polyvinyl alcohol was used to coat the membranes as a pre-treatment step before Si NP modification. After coating the membrane with Si NPs, the roughness of the membrane surface decreased, likely leading to less fouling. After coating Si NPs, Total Organic Carbon rejection increased from 93.1% for pristine α-alumina tubular membranes to 97.7% for silica-modified membranes because of hydrophilic improvements of the modified membranes. The Si NP coating improved the anti-fouling property of membranes with the flux recovery ratio increasing from 71.3% for pristine α-alumina tubular membranes to 85.9% for silica-modified membranes. Scanning Electron Microscopy, Energy- dispersive X-ray spectroscopy, oil contact angle, and Atomic Force Microscopy characterization tests were done. The tests showed successful Si NPs impregnation and altered wettability. 
    more » « less