We study a scheduling problem for a base-station transmitting status information to multiple user-equipments (UE) with the goal of minimizing the total expected Age-of-Information (AoI). Such a problem can be formulated as a Restless MultiArmed Bandit (RMAB) problem and solved asymptoticallyoptimally by a low-complexity Whittle index policy, if each UE’s sub-problem is Whittle indexable. However, proving Whittle indexability can be highly non-trivial, especially when the value function cannot be derived in closed-form. In particular, this is the case for the AoI minimization problem with stochastic arrivals and unreliable channels, whose Whittle indexability remains an open problem. To overcome this difficulty, we develop a sufficient condition for Whittle indexability based on the notion of active time (AT). Even though the AT condition shares considerable similarity to the Partial Conservation Law (PCL) condition, it is much easier to understand and verify. We then apply our AT condition to the stochastic-arrival unreliablechannel AoI minimization problem and, for the first time in the literature, prove its Whittle indexability. Our proof uses a novel coupling approach to verify the AT condition, which may also be of independent interest to other large-scale RMAB problems.
more »
« less
A Whittle Index Policy for the Remote Estimation of Multiple Continuous Gauss-Markov Processes over Parallel Channels
In this paper, we study a sampling and transmission scheduling problem for multi-source remote estimation, where a scheduler determines when to take samples from multiple continuous-time Gauss-Markov processes and send the samples over multiple channels to remote estimators. The sample transmission times are i.i.d. across samples and channels. The objective of the scheduler is to minimize the weighted sum of the time-average expected estimation errors of these Gauss-Markov sources. This problem is a continuous-time Restless Multi-armed Bandit (RMAB) problem with a continuous state space. We prove that the bandits are indexable and derive an exact expression of the Whittle index. To the extent of our knowledge, this is the first Whittle index policy for multi-source signal-aware remote estimation of Gauss-Markov processes. We further investigate signal-agnostic remote estimation and develop a Whittle index policy for multi-source Age of Information (AoI) minimization over parallel channels with i.i.d. random transmission times. Our results unite two theoretical frameworks for remote estimation and AoI minimization: threshold-based sampling and Whittle index-based scheduling. In the single-source, single-channel scenario, we demonstrate that the optimal solution to the sampling and scheduling problem can be equivalently expressed as both a threshold-based sampling strategy and a Whittle index-based scheduling policy. Notably, the Whittle index is equal to zero if and only if two conditions are satisfied: (i) the channel is idle, and (ii) the estimation error is precisely equal to the threshold in the threshold-based sampling strategy. Moreover, the methodology employed to derive threshold-based sampling strategies in the single-source, single-channel scenario plays a crucial role in establishing indexability and evaluating the Whittle index in the more intricate multi-source, multi-channel scenario. Our numerical results show that the proposed policy achieves high performance gain over the existing policies when some of the Gauss-Markov processes are highly unstable.
more »
« less
- Award ID(s):
- 2239677
- PAR ID:
- 10497737
- Publisher / Repository:
- ACM
- Date Published:
- ISBN:
- 9781450399265
- Page Range / eLocation ID:
- 91 to 100
- Format(s):
- Medium: X
- Location:
- Washington DC USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)We study how to schedule data sources in a wireless time-sensitive information system with multiple heterogeneous and unreliable channels to minimize the total expected Age-of-Information (AoI). Although one could formulate this problem as a discrete-time Markov Decision Process (MDP), such an approach suffers from the curse of dimensionality and lack of insights. For single-channel systems, prior studies have developed lower-complexity solutions based on the Whittle index. However, Whittle index has not been studied for systems with multiple heterogeneous channels, mainly because indexability is not well defined when there are multiple dual cost values, one for each channel. To overcome this difficulty, we introduce new notions of partial indexability and partial index, which are defined with respect to one channel's cost, given all other channels' costs. We then combine the ideas of partial indices and max-weight matching to develop a Sum Weighted Index Matching (SWIM) policy, which iteratively updates the dual costs and partial indices. The proposed policy is shown to be asymptotically optimal in minimizing the total expected AoI, under a technical condition on a global attractor property. Extensive performance simulations demonstrate that the proposed policy offers significant gains over conventional approaches by achieving a near-optimal AoI. Further, the notion of partial index is of independent interest and could be useful for other problems with multiple heterogeneous resources.more » « less
-
null (Ed.)In this paper, we study the problem of minimizing the age of information when a source can transmit status updates over two heterogeneous channels. Our work is motivated by recent developments in 5G mmWave technology, where transmissions may occur over an unreliable but fast (e.g., mmWave) channel or a slow reliable (e.g., sub-6GHz) channel. The unreliable channel is modeled as a time-correlated Gilbert-Elliot channel, where information can be transmitted at a high rate when the channel is in the "ON" state. The reliable channel provides a deterministic but lower data rate. The scheduling strategy determines the channel to be used for transmission with the aim to minimize the time-average age of information (AoI). The optimal scheduling problem is formulated as a Markov Decision Process (MDP), which in our setting poses some significant challenges because e.g., supermodularity does not hold for part of the state space. We show that there exists a multi-dimensional threshold-based scheduling policy that is optimal for minimizing the age. A low-complexity bisection algorithm is further devised to compute the optimal thresholds. Numerical simulations are provided to compare different scheduling policies.more » « less
-
We study the design of a goal-oriented sampling and scheduling strategy through a channel with highly variable two-way random delay, which can exhibit memory (e.g., Delay and Disruption Tolerant Networks). The objective of the communication is to optimize the performance of remote inference, where an inference algorithm (e.g., a trained neural network) on the receiver side predicts a time-varying target signal using the data samples transmitted by a sensor. Previous formulations to this problem either assumed a channel with IID transmission delay, neglecting feedback delay or considered the monotonic relation that the performance only gets worse as the input information ages. We show how, with delayed feedback, one can effectively exploit the knowledge about delay memory through an index-based threshold policy. This policy minimizes the expected time-average inference error that can be monotone or non-monotone in age. The index function is expressed in terms of the Age of Information (AoI) on the receiver side and a parameter regarding the distribution of subsequent transmission delay, both of which can readily be tracked.more » « less
-
In this paper, we consider transmission scheduling in a status update system, where updates are generated periodically and transmitted over a Gilbert-Elliott fading channel. The goal is to minimize the long-run average age of information (AoI) under a long-run average energy constraint. We consider two practical cases to obtain channel state information (CSI): (i) without channel sensing and (ii) with delayed channel sensing. For (i), CSI is revealed by the feedback (ACK/NACK) of a transmission, but when no transmission occurs, CSI is not revealed. Thus, we have to balance tradeoffs across energy, AoI, channel exploration, and channel exploitation. The problem is formulated as a constrained partially observable Markov decision process (POMDP). We show that the optimal policy is a randomized mixture of no more than two stationary deterministic policies each of which is of a threshold-type in the belief on the channel. For (ii), (delayed) CSI is available via channel sensing. Then, the tradeoff is only between the AoI and energy. The problem is formulated as a constrained MDP. The optimal policy is shown to have a similar structure as in (i) but with an AoI associated threshold. With these, we develop an optimal structure-aware algorithm for each case.more » « less