skip to main content

Search for: All records

Award ID contains: 2239677

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this paper, we study a sampling problem where a source takes samples from a Wiener process and transmits them through a wireless channel to a remote estimator. Due to channel fading, interference, and potential collisions, the packet transmissions are unreliable and could take random time durations. Our objective is to devise an optimal causal sampling policy that minimizes the long-term average mean square estimation error. This optimal sampling problem is a recursive optimal stopping problem, which is generally quite difficult to solve. However, we prove that the optimal sampling strategy is, in fact, a simple threshold policy where a new sample is taken whenever the instantaneous estimation error exceeds a threshold. This threshold remains a constant value that does not vary over time. By exploring the structure properties of the recursive optimal stopping problem, a low-complexity iterative algorithm is developed to compute the optimal threshold. This work generalizes previous research by incorporating both transmission errors and random transmission times into remote estimation. Numerical simulations are provided to compare our optimal policy with the zero-wait and age-optimal policies.

    more » « less
    Free, publicly-accessible full text available December 7, 2024
  2. During the 1950s, the Gros Michel species of bananas were nearly wiped out by the incurable Fusarium Wilt, also known as Panama Disease. Originating in Southeast Asia, Fusarium Wilt is a banana pandemic that has been threatening the multi-billion-dollar banana industry worldwide. The disease is caused by a fungus that spreads rapidly throughout the soil and into the roots of banana plants. Currently, the only way to stop the spread of this disease is for farmers to manually inspect and remove infected plants as quickly as possible, which is a time-consuming process. The main purpose of this study is to build a deep Convolutional Neural Network (CNN) using a transfer learning approach to rapidly identify Fusarium wilt infections on banana crop leaves. We chose to use the ResNet50 architecture as the base CNN model for our transfer learning approach owing to its remarkable performance in image classification, which was demonstrated through its victory in the ImageNet competition. After its initial training and fine-tuning on a data set consisting of 600 healthy and diseased images, the CNN model achieved near-perfect accuracy of 0.99 along with a loss of 0.46 and was fine-tuned to adapt the ResNet base model. ResNet50’s distinctive residual block structure could be the reason behind these results. To evaluate this CNN model, 500 test images, consisting of 250 diseased and healthy banana leaf images, were classified by the model. The deep CNN model was able to achieve an accuracy of 0.98 and an F-1 score of 0.98 by correctly identifying the class of 492 of the 500 images. These results show that this DCNN model outperforms existing models such as Sangeetha et al., 2023’s deep CNN model by at least 0.07 in accuracy and is a viable option for identifying Fusarium Wilt in banana crops.

    more » « less
    Free, publicly-accessible full text available December 1, 2024
  3. In this study, we investigate a context-aware status updating system consisting of multiple sensor-estimator pairs. A centralized monitor pulls status updates from multiple sensors that are monitoring several safety-critical situations (e.g., carbon monoxide density in forest fire detection, machine safety in industrial automation, and road safety). Based on the received sensor updates, multiple estimators determine the current safety-critical situations. Due to transmission errors and limited communication resources, the sensor updates may not be timely, resulting in the possibility of misunderstanding the current situation. In particular, if a dangerous situation is misinterpreted as safe, the safety risk is high. In this paper, we introduce a novel framework that quantifies the penalty due to the unawareness of a potentially dangerous situation. This situation-unaware penalty function depends on two key factors: the Age of Information (AoI) and the observed signal value. For optimal estimators, we provide an information-theoretic bound of the penalty function that evaluates the fundamental performance limit of the system. To minimize the penalty, we study a pull-based multi-sensor, multi-channel transmission scheduling problem. Our analysis reveals that for optimal estimators, it is always beneficial to keep the channels busy. Due to communication resource constraints, the scheduling problem can be modelled as a Restless Multi-armed Bandit (RMAB) problem. By utilizing relaxation and Lagrangian decomposition of the RMAB, we provide a low-complexity scheduling algorithm which is asymptotically optimal. Our results hold for both reliable and unreliable channels. Numerical evidence shows that our scheduling policy can achieve up to 100 times performance gain over periodic updating and up to 10 times over randomized policy. 
    more » « less
    Free, publicly-accessible full text available October 30, 2024
  4. In this paper, we study a sampling and transmission scheduling problem for multi-source remote estimation, where a scheduler determines when to take samples from multiple continuous-time Gauss-Markov processes and send the samples over multiple channels to remote estimators. The sample transmission times are i.i.d. across samples and channels. The objective of the scheduler is to minimize the weighted sum of the time-average expected estimation errors of these Gauss-Markov sources. This problem is a continuous-time Restless Multi-armed Bandit (RMAB) problem with a continuous state space. We prove that the bandits are indexable and derive an exact expression of the Whittle index. To the extent of our knowledge, this is the first Whittle index policy for multi-source signal-aware remote estimation of Gauss-Markov processes. We further investigate signal-agnostic remote estimation and develop a Whittle index policy for multi-source Age of Information (AoI) minimization over parallel channels with i.i.d. random transmission times. Our results unite two theoretical frameworks for remote estimation and AoI minimization: threshold-based sampling and Whittle index-based scheduling. In the single-source, single-channel scenario, we demonstrate that the optimal solution to the sampling and scheduling problem can be equivalently expressed as both a threshold-based sampling strategy and a Whittle index-based scheduling policy. Notably, the Whittle index is equal to zero if and only if two conditions are satisfied: (i) the channel is idle, and (ii) the estimation error is precisely equal to the threshold in the threshold-based sampling strategy. Moreover, the methodology employed to derive threshold-based sampling strategies in the single-source, single-channel scenario plays a crucial role in establishing indexability and evaluating the Whittle index in the more intricate multi-source, multi-channel scenario. Our numerical results show that the proposed policy achieves high performance gain over the existing policies when some of the Gauss-Markov processes are highly unstable. 
    more » « less
  5. In this paper, we study an age of information minimization problem in continuous-time and discrete-time status updating systems that involve multiple packet flows, multiple servers, and transmission errors. Four scheduling policies are proposed. We develop a unifying sample-path approach and use it to show that, when the packet generation and arrival times are synchronized across the flows, the proposed policies are (near) optimal for minimizing any time-dependent, symmetric, and non-decreasing penalty function of the ages of the flows over time in a stochastic ordering sense. 
    more » « less
    Free, publicly-accessible full text available October 1, 2024
  6. In this paper, we consider a remote inference system, where a neural network is used to infer a time-varying target (e.g., robot movement), based on features (e.g., video clips) that are progressively received from a sensing node (e.g., a camera). Each feature is a temporal sequence of sensory data. The inference error is determined by (i) the timeliness and (ii) the sequence length of the feature, where we use Age of Information (AoI) as a metric for timeliness. While a longer feature can typically provide better inference performance, it often requires more channel resources for sending the feature. To minimize the time-averaged inference error, we study a learning and communication co-design problem that jointly optimizes feature length selection and transmission scheduling. When there is a single sensor-predictor pair and a single channel, we develop low-complexity optimal co-designs for both the cases of time-invariant and time-variant feature length. When there are multiple sensor-predictor pairs and multiple channels, the co-design problem becomes a restless multi-arm multi-action bandit problem that is PSPACE-hard. For this setting, we design a low-complexity algorithm to solve the problem. Trace-driven evaluations demonstrate the potential of these co-designs to reduce inference error by up to 10000 times. 
    more » « less