skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Constant community identification in million scale networks using image thresholding algorithms
Constant communities, i.e., groups of vertices that are always clustered together, independent of the community detection algorithm used, are necessary for reducing the inherent stochasticity of community detection results. Current methods for identifying constant communities require multiple runs of community detection algorithm(s). This process is extremely time consuming and not scalable to large networks. We propose a novel approach for finding the constant communities, by transforming the problem to a binary classification of edges. We apply the Otsu method from image thresholding to classify edges based on whether they are always within a community or not. Our algorithm does not require any explicit detection of communities and can thus scale to very large networks of the order of millions of vertices. Our results on real-world graphs show that our method is significantly faster and the constant communities produced have higher accuracy (as per F1 and NMI scores) than state-of-the-art baseline methods.  more » « less
Award ID(s):
1956373
PAR ID:
10336639
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
ASONAM '21: Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining
Page Range / eLocation ID:
116 to 120
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Label Propagation is not only a well-known machine learning algorithm for classification, but it is also an effective method for discovering communities and connected components in networks. We propose a new Direction-Optimizing Label Propagation Algorithm (DOLPA) framework that enhances the performance of the standard Label Propagation Algorithm (LPA), increases its scalability, and extends its versatility and application scope. As a central feature, the DOLPA framework relies on the use of frontiers and alternates between label push and label pull operations to attain high performance. It is formulated in such a way that the same basic algorithm can be used for finding communities or connected components in graphs by only changing the objective function used. Additionally, DOLPA has parameters for tuning the processing order of vertices in a graph to reduce the number of edges visited and improve the quality of solution obtained. We present the design and implementation of the enhanced algorithm as well as our shared-memory parallelization of it using OpenMP. We also present an extensive experimental evaluation of our implementations using the LFR benchmark and real-world networks drawn from various domains. Compared with an implementation of LPA for community detection available in a widely used network analysis software, we achieve at most five times the F-Score while maintaining similar runtime for graphs with overlapping communities. We also compare DOLPA against an implementation of the Louvain method for community detection using the same LFR-graphs and show that DOLPA achieves about three times the F-Score at just 10% of the runtime. For connected component decomposition, our algorithm achieves orders of magnitude speedups over the basic LP-based algorithm on large diameter graphs, up to 13.2 × speedup over the Shiloach-Vishkin algorithm, and up to 1.6 × speedup over Afforest on an Intel Xeon processor using 40 threads. 
    more » « less
  2. Abstract Cellular biological networks represent the molecular interactions that shape function of living cells. Uncovering the organization of a biological network requires efficient and accurate algorithms to determine the components, termed communities, underlying specific processes. Detecting functional communities is challenging because reconstructed biological networks are always incomplete due to technical bias and biological complexity, and the evaluation of putative communities is further complicated by a lack of known ground truth. To address these challenges, we developed a geometric-based detection framework based on Ollivier-Ricci curvature to exploit information about network topology to perform community detection from partially observed biological networks. We further improved this approach by integrating knowledge of gene function, termed side information, into the Ollivier-Ricci curvature algorithm to aid in community detection. This approach identified essential conserved and varied biological communities from partially observedArabidopsisprotein interaction datasets better than the previously used methods. We show that Ollivier-Ricci curvature with side information identified an expanded auxin community to include an important protein stability complex, the Cop9 signalosome, consistent with previous reported links to auxin response and root development. The results show that community detection based on Ollivier-Ricci curvature with side information can uncover novel components and novel communities in biological networks, providing novel insight into the organization and function of complex networks. 
    more » « less
  3. Abstract Dynamic community detection provides a coherent description of network clusters over time, allowing one to track the growth and death of communities as the network evolves. However, modularity maximization, a popular method for performing multilayer community detection, requires the specification of an appropriate null network as well as resolution and interlayer coupling parameters. Importantly, the ability of the algorithm to accurately detect community evolution is dependent on the choice of these parameters. In functional temporal networks, where evolving communities reflect changing functional relationships between network nodes, it is especially important that the detected communities reflect any state changes of the system. Here, we present analytical work suggesting that a uniform null network provides improved sensitivity to the detection of small evolving communities in temporal networks with positive edge weights bounded above by 1, such as certain types of correlation networks. We then propose a method for increasing the sensitivity of modularity maximization to state changes in nodal dynamics by modelling self-identity links between layers based on the self-similarity of the network nodes between layers. This method is more appropriate for functional temporal networks from both a modelling and mathematical perspective, as it incorporates the dynamic nature of network nodes. We motivate our method based on applications in neuroscience where network nodes represent neurons and functional edges represent similarity of firing patterns in time. We show that in simulated data sets of neuronal spike trains, updating interlayer links based on the firing properties of the neurons provides superior community detection of evolving network structure when groups of neurons change their firing properties over time. Finally, we apply our method to experimental calcium imaging data that monitors the spiking activity of hundreds of neurons to track the evolution of neuronal communities during a state change from the awake to anaesthetized state. 
    more » « less
  4. Communities are a common and widely studied structure in networks, typically assum- ing that the network is fully and correctly observed. In practice, network data are often collected by querying nodes about their connections. In some settings, all edges of a sam- pled node will be recorded, and in others, a node may be asked to name its connections. These sampling mechanisms introduce noise and bias, which can obscure the community structure and invalidate assumptions underlying standard community detection methods. We propose a general model for a class of network sampling mechanisms based on recording edges via querying nodes, designed to improve community detection for network data col- lected in this fashion. We model edge sampling probabilities as a function of both individual preferences and community parameters, and show community detection can be performed by spectral clustering under this general class of models. We also propose, as a special case of the general framework, a parametric model for directed networks we call the nomination stochastic block model, which allows for meaningful parameter interpretations and can be fitted by the method of moments. In this case, spectral clustering and the method of mo- ments are computationally ecient and come with theoretical guarantees of consistency. We evaluate the proposed model in simulation studies on unweighted and weighted net- works and under misspecified models. The method is applied to a faculty hiring dataset, discovering a meaningful hierarchy of communities among US business schools. 
    more » « less
  5. Abstract Many statistical models for networks overlook the fact that most real-world networks are formed through a growth process. To address this, we introduce the Preferential Attachment Plus Erdős–Rényi model, where we let a random network G be the union of a preferential attachment (PA) tree T and additional Erdős–Rényi (ER) random edges. The PA tree captures the underlying growth process of a network where vertices/edges are added sequentially, while the ER component can be regarded as noise. Given only one snapshot of the final network G, we study the problem of constructing confidence sets for the root node of the unobserved growth process; the root node can be patient zero in an infection network or the source of fake news in a social network. We propose inference algorithms based on Gibbs sampling that scales to networks with millions of nodes and provide theoretical analysis showing that the size of the confidence set is small if the noise level of the ER edges is not too large. We also propose variations of the model in which multiple growth processes occur simultaneously, reflecting the growth of multiple communities; we use these models to provide a new approach to community detection. 
    more » « less