skip to main content


Title: Insights into the thermomechanical and interfacial behaviors of polymer‐clay nanocomposites via coarse‐grained molecular dynamics simulations
Abstract Highlights

CG modeling is performed to explore the thermomechanical behavior of PCN.

Effects of nanoclay weight percentage and size on modulus are studied.

Interface leads to nanoconfinement effect onTgand molecular stiffness.

Correlations between molecular stiffness and modulus are identified.

Simulations show spatial variation of dynamical heterogeneity.

 
more » « less
NSF-PAR ID:
10497813
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Polymer Composites
ISSN:
0272-8397
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The successful processing of bilayer protective coatings on plastics using a combined spray and atmospheric plasma deposition method is shown. The base layer is a spray deposited coating with high adhesion using (3‐glycidyloxypropyl) trimethoxysilane and tetrapropyl zirconate (TPOZ) precursors. The top dense layer is deposited by atmospheric plasma deposition with a tetraethyl orthosilicate precursor. The coating deposition rate, chemical composition, elastic modulus, hardness, and adhesion to poly(methyl methacrylate) (PMMA) substrates are investigated. The adhesion to the polymer substrate is found to decrease with increasing TPOZ content in the precursor solution, while the elastic modulus and hardness of the base layer increase. A silane surface pretreatment of the PMMA substrate is shown to significantly increase the coating adhesion. The adhesion of the optimized coating is so high that it forces the debond interface change from adhesive failure at the coating/PMMA interface to cohesive failure within the PMMA substrate. The combined bilayer structure exhibits a >90% transparency in the visible wavelengths, eightfold increase in adhesion energy and fourfold increase in Young's modulus compared to commercial sol–gel polysiloxane coatings. The approach provides a strategy for an unprecedented combination of adhesion and mechanical properties.

     
    more » « less
  2. null (Ed.)
    Herein, a series of novel, lignin-based hydrogel composites was fabricated by incorporating ultraclean lignins (UCLs), of controlled molecular weight and low dispersity, into poly(vinyl alcohol) (PVA). The UCLs were obtained from a novel liquid–liquid fractionation of high dispersity crude bulk lignins (CBLs) obtained from Kraft black liquor. A complementary series of composite hydrogels was fabricated using these CBLs. Both the CBLs and UCLs were functionalized with vinyl-containing acrylate groups allowing the lignins to chemically crosslink with themselves, forming an interpenetrated network with the thermally-crosslinked network of PVA chains. Successful functionalization of the UCLs was demonstrated by proton and phosphorous nuclear magnetic resonance. PVA–lignin hydrogels containing 20 wt% UCL saw a reduction in methylene blue (MB) permeability by approximately two orders of magnitude when compared to neat PVA. Further, for composite hydrogels containing either 50 wt% UCL or CBL, no MB was detected in the receiving reservoir over the duration of the permeation experiment. In general, an increase in Young's moduli was observed in PVA–lignin hydrogels containing CBLs, where hydrogels composed of 50 wt% CBLs exhibited ∼40% increase when compared to neat PVA. In contrast, a ∼10% reduction in Young's moduli was observed for composite hydrogels containing 20 wt% UCLs or less, though these membranes exhibited the lowest MB permeabilities of all membranes investigated. However, the largest increase in membrane stiffness was observed for composite hydrogels containing 50 wt% UCLs, where a ∼70% increase in Young's modulus was observed. Finally, the concentration and functionalization of the lignins was seen to have a direct impact on the network structure of the soft composites, where in general, the molecular weight between crosslinks is seen to decrease with increasing lignin concentration. 
    more » « less
  3. Inspired by spider silk's hierarchical diversity, we leveraged peptide motifs with the capability to tune structural arrangement for controlling the mechanical properties of a conventional polymer framework. The addition of nanofiller with hydrogen bonding sites was used as another pathway towards hierarchical tuning via matrix–filler interactions. Specifically, peptide–polyurea hybrids (PPUs) were combined with cellulose nanocrystals (CNCs) to develop mechanically-tunable nanocomposites via tailored matrix–filler interactions (or peptide–cellulose interactions). In this material platform, we explored the effect of these matrix–filler interactions on the secondary structure, hierarchical ordering, and mechanical properties of the peptide hybrid nanocomposites. Interactions between the peptide matrix and CNCs occur in all of the PPU/CNC nanocomposites, preventing α-helical ordering, but promoting inter-molecular hydrogen bonded β-sheet formation. Depending on peptide and CNC content, the Young's modulus varies from 10 to 150 MPa. Unlike conventional cellulose-reinforced polymer nanocomposites, the mechanical properties of these composite materials are dictated by a balance of CNC reinforcement, peptidic ordering, and microphase-separated morphology. This research highlights that leveraging peptide–cellulose interactions is a strategy to create materials with targeted mechanical properties for a specific application using a limited selection of building blocks. 
    more » « less
  4. The structural characteristics of polymer nanocomposites with functionalized multiwall carbon nanotubes (MWCNTs) in poly(methyl methacrylate) matrix have been studied in relation to nanofiller loading and surface functionality. Different functional groups have been covalently attached on the MWCNTs sidewalls in order to induce interfacial interactions at nanofiller/polymer interface, which resulted in an improved nanomechanical features. Structural properties of nanocomposites, studied with XRD and Raman analysis, indicated the most pronounced decrease in a degree of amorphousness for samples containing 0.5 and 1 wt% of MWCNTs functionalized with dapsone (dapson‐MWCNT) and diethyl malonate (dem‐MWCNT). SEM and TEM micrographs confirmed improved dispersibility of the MWCNTs modified with aromatic structure of dapsone inside PMMA matrix. A significant increase in a glass transition temperature of over 60°C has been found for the 1 wt% dapson‐MWCNT nanocomposite. Additional modification of dapson‐MWCNT by further increasing aromaticity and voluminosity of attached moiety (fid‐MWCNT), showed 30°C increases in a glass transition temperature at 4 wt% of nanofiller loading, which is similar to shift of 37°C with loading of MWCNTs modified with ester terminal group. A maximum increase of 56% of reduced modulus and 86% of hardness was obtained for 1 wt% loading of dapson‐MWCNT nanofiller. POLYM. COMPOS., 38:E472–E489, 2017. © 2016 Society of Plastics Engineers

     
    more » « less
  5. null (Ed.)
    In this investigation, multi-walled carbon nanotubes (MWCNTs) were grown over carbon fiber fabrics via a relatively nondestructive synthesis technique. The MWCNTs patches were grown into three different topologies: uniform, fine patterned and coarse patterned. Hybrid carbon fiber-reinforced polymer composites (CFRPs) were fabricated based on the patterned reinforcements. Tensile tests, dynamic mechanical thermal analyses (DMTA) and flexure load relaxation tests were carried out to investigate the effect of the patterned nano-reinforcement on the static, dynamic, glass transition, and viscoelastic performance of the hybrid composites. Results revealed that the hybrid composite based on fine-patterned topology achieved better performance over all other configurations as it exhibited about 19% improvement in both the strength and modulus over the reference composite with no MWCNTs. Additionally, the increase in glass transition for this composite was as high as 13%. The damping parameter (tan δ) was improved by 46%. The stress relaxation results underlined the importance of patterned MWCNTs in minimizing the stress decay at elevated temperatures and loading conditions. Utilizing patterned MWCNTs topology significantly reduced the stress decay percentage at the thermomechanical conditions 60 MPa and 75 °C from 16.7% to 7.8%. These improvements are attributed to both the enhanced adhesion and large interface area by placing MWCNTs and by inducing an interlocking mechanism that allows the interaction of the three constituents in load transfer, crack deflection and hindering undesired viscoelastic deformations under different thermomechanical loadings. 
    more » « less