Abstract The transition towards designs which co-package electronic and photonic die together in data center switch packages has created a scaling path to Petabyte per second (Pbps) input/output (I/O) in such systems. In a co-packaged design, the scaling of bandwidth, cost, and energy will be governed by the number of optical I/O channels and the data rate per channel. While optical communication provide an opportunity to exploit wavelength division multiplexing (WDM) to scale data rate, the limited 127 µm pitch of V-groove based single mode fiber arrays and the use of active alignment and bonding for their packaging present challenges to scaling the number of optical channels. Flip-chip optical couplers which allow for low loss, broadband operation and automated passive assembly represent a solution for continued scaling. In this paper, we propose a novel scheme to vertically couple between silicon based waveguides on separate chips using graded index (GRIN) couplers in combination with an evanescent coupler. Simulation results using a 3D Finite-Difference Time-Domain (FDTD) solver are presented, demonstrating coupling losses as low as 0.35 dB for a chip-to-chip gap of 11 µm; 1-dB vertical and lateral alignment tolerances of approximately 2.45 µm and ± 2.66 µm, respectively; and a possible 1-dB bandwidth of greater than 1500 nm. These results demonstrate the potential of our coupler as a universal interface in future co-packaged optics systems.
more »
« less
High density vertical optical interconnects for passive assembly
The co-packaging of optics and electronics provides a potential path forward to achieving beyond 50 Tbps top of rack switch packages. In a co-packaged design, the scaling of bandwidth, cost, and energy is governed by the number of optical transceivers (TxRx) per package as opposed to transistor shrink. Due to the large footprint of optical components relative to their electronic counterparts, the vertical stacking of optical TxRx chips in a co-packaged optics design will become a necessity. As a result, development of efficient, dense, and wide alignment tolerance chip-to-chip optical couplers will be an enabling technology for continued TxRx scaling. In this paper, we propose a novel scheme to vertically couple into standard 220 nm silicon on insulator waveguides from 220 nm silicon nitride on glass waveguides using overlapping, inverse double tapers. Simulation results using Lumerical’s 3D Finite Difference Time Domain solver are presented, demonstrating insertion losses below -0.13 dB for an inter-chip spacing of 1µm; 1 dB vertical and lateral alignment tolerances of approximately 2.6µm and ± 2.8µm, respectively; a greater than 300 nm 1 dB bandwidth; and 1 dB twist and tilt tolerances of approximately ± 2.3 degrees and 0.4 degrees, respectively. These results demonstrate the potential of our coupler for use in co-packaged designs requiring high performance, high density, CMOS compatible out of plane optical connections.
more »
« less
- Award ID(s):
- 2236093
- PAR ID:
- 10497829
- Publisher / Repository:
- Optics Express Journal
- Date Published:
- Journal Name:
- Optics Express
- Edition / Version:
- 1.0
- Volume:
- 31
- Issue:
- 2
- ISSN:
- 1094-4087
- Page Range / eLocation ID:
- 2816
- Subject(s) / Keyword(s):
- Co-packaged Optics CMOS-compatible Simulation Out of plane optical connection
- Format(s):
- Medium: X Size: 4.8MB Other: pdf
- Size(s):
- 4.8MB
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
An experimentally demonstrated, vertical chip-to-chip evanescent coupler between silicon nitride (Si₃N₄) and silicon (Si) is presented with the coupler loss measured to be 0.39 ± 1.06 dB at 1550 nm with a 1-dB bandwidth of 160 nm extending across the C-band, S-band, and L-band (1480-1640 nm). The average coupling loss was determined to be 0.73 dB for the 1480-1640 nm wavelength range with a ± 2σ tolerance of ± 0.92 dB. The 1-dB lateral alignment tolerance was 1.56 ± 0.14 μm at 1550 nm and the average tolerance was 1.38 ± 0.24 μm across the 1480-1640 nm wavelength regime. In addition, the average coupling loss varied by less than ± 0.35 dB and the average 1-dB alignment tolerance varied by less than ± 30 nm for temperatures varying from 23-60°C. Finally, the average coupling loss range was less than 1.5 dB range across four sets of identically packaged die. This is the first experimental demonstration of an inter-chip, passively assembled evanescent coupler using standard CMOS foundry processes for directly coupling between Si and Si₃N₄, overcoming a waveguide refractive index difference of Δn = 1.32 without requiring taper tip widths of less than 100 nm.more » « less
-
As silicon photonics transitions from research to commercial deployment, packaging solutions that efficiently couple light into highly compact and functional sub-micrometer silicon waveguides are imperative but remain challenging. The 220 nm silicon-on-insulator (SOI) platform, poised to enable large-scale integration, is the most widely adopted by foundries, resulting in established fabrication processes and extensive photonic component libraries. The development of a highly efficient, scalable, and broadband coupling scheme for this platform is therefore of paramount importance. Leveraging two-photon polymerization (TPP) and a deterministic free-form micro-optics design methodology based on the Fermat’s principle, this work demonstrates an ultra-efficient and broadband 3-D coupler interface between standard SMF-28 single-mode fibers and silicon waveguides on the 220 nm SOI platform. The coupler achieves a low coupling loss of 0.8 dB for the fundamental TE mode, along with 1 dB bandwidth exceeding 180 nm. The broadband operation enables diverse bandwidth-driven applications ranging from communications to spectroscopy. Furthermore, the 3-D free-form coupler also enables large tolerance to fiber misalignments and manufacturing variability, thereby relaxing packaging requirements toward cost reduction capitalizing on standard electronic packaging process flows.more » « less
-
Abstract In this paper, we report, for the first time, a theoretical study on passive photonic devices including optical power splitters/combiners and grating couplers (GCs) operating at non-telecom wavelengths above 2 µ m in a monolithic GaSb platform. Passive components were designed to operate, in particular, at around 2.6 µ m for monolithic integration with active photonic devices on the III–V gallium antimonide material platform. The three popular types of splitters/combiners such as directional couplers, multimode interferometer-, and Y-branch-couplers were theoretically investigated. Based on our optimized design and rigorous analysis, fabrication-compatible 1 × 2 optical power splitters with less than 0.12 dB excess losses, large spectral bandwidth, and a 50:50 splitting ratio are achieved. For fiber-to-chip coupling, we also report the design of GCs with an outcoupling efficiency of ∼29% at 2.56 μ m and a 3 dB bandwidth of 80 nm. The results represent a significant step towards developing a complete functional photonic integrated circuits at mid-wave infrared wavelengths.more » « less
-
Strong amplification in integrated photonics is one of the most desired optical functionalities for computing, communications, sensing, and quantum information processing. Semiconductor gain and cubic nonlinearities, such as four-wave mixing and stimulated Raman and Brillouin scattering, have been among the most studied amplification mechanisms on chip. Alternatively, material platforms with strong quadratic nonlinearities promise numerous advantages with respect to gain and bandwidth, among which nanophotonic lithium niobate is one of the most promising candidates. Here, we combine quasi-phase matching with dispersion engineering in nanophotonic lithium niobate waveguides and achieve intense optical parametric amplification. We measure a broadband phase-sensitive on-chip amplification larger than 50 dB/cm in a 6-mm-long waveguide. We further confirm high gain operation in the degenerate and nondegenerate regimes by amplifying vacuum fluctuations to macroscopic levels, with on-chip gains exceeding 100 dB/cm over 600 nm of bandwidth around 2 µm. Our results unlock new possibilities for on-chip few-cycle nonlinear optics, mid-infrared photonics, and quantum photonics.more » « less
An official website of the United States government

