Legged robots have shown remarkable advantages in navigating uneven terrain. However, realizing effective loco-motion and manipulation tasks on quadruped robots is still challenging. In addition, object and terrain parameters are generally unknown to the robot in these problems. Therefore, this paper proposes a hierarchical adaptive control framework that enables legged robots to perform loco-manipulation tasks without any given assumption on the object's mass, the friction coefficient, or the slope of the terrain. In our approach, we first present an adaptive manipulation control to regulate the contact force to manipulate an unknown object on unknown terrain. We then introduce a unified model predictive control (MPC) for loco-manipulation that takes into account the manipulation force in our robot dynamics. The proposed MPC framework thus can effectively regulate the interaction force between the robot and the object while keeping the robot balance. Experimental validation of our proposed approach is successfully conducted on a Unitree A1 robot, allowing it to manipulate an unknown time-varying load up to 7 kg (60% of the robot's weight). Moreover, our framework enables fast adaptation to unknown slopes or different surfaces with different friction coefficients.
more »
« less
Adaptive Contact-Implicit Model Predictive Control with Online Residual Learning
The hybrid nature of multi-contact robotic systems, due to making and breaking contact with the environment, creates significant challenges for high-quality control. Existing model-based methods typically rely on either good prior knowledge of the multi-contact model or require significant offline model tuning effort, thus resulting in low adaptability and robustness. In this paper, we propose a realtime adaptive multi-contact model predictive control framework, which enables online adaption of the hybrid multi-contact model and continuous improvement of the control performance for contact-rich tasks. This framework includes an adaption module, which continuously learns a residual of the hybrid model to minimize the gap between the prior model and reality, and a real-time multi-contact MPC controller. We demonstrated the effectiveness of the framework in synthetic examples, and applied it on hardware to solve contact-rich manipulation tasks, where a robot uses its end-effector to roll different unknown objects on a table to track given paths. The hardware experiments show that with a rough prior model, the multi-contact MPC controller adapts itself on-the-fly with an adaption rate around 20 Hz and successfully manipulates previously unknown objects with non-smooth surface geometries. Accompanying media can be found at: https://sites.google.com/view/adaptive-contact-implicit-mpc/home
more »
« less
- Award ID(s):
- 2238480
- PAR ID:
- 10497972
- Publisher / Repository:
- IEEE
- Date Published:
- Journal Name:
- IEEE International Conference on Robotics and Automation
- ISSN:
- 1049-3492
- Format(s):
- Medium: X
- Location:
- Yokohama, Japan
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
While many robotic tasks, like manipulation and locomotion, are fundamentally based in making and breaking contact with the environment, state-of-the-art control policies struggle to deal with the hybrid nature of multi-contact motion. Such controllers often rely heavily upon heuristics or, due to the combinatoric structure in the dynamics, are unsuitable for real-time control. Principled deployment of tactile sensors offers a promising mechanism for stable and robust control, but modern approaches often use this data in an ad hoc manner, for instance to guide guarded moves. In this work, by exploiting the complementarity structure of contact dynamics, we propose a control framework which can close the loop on rich, tactile sensors. Critically, this framework is non-combinatoric, enabling optimization algorithms to automatically synthesize provably stable control policies. We demonstrate this approach on three different underactuated, multi-contact robotics problems.more » « less
-
Hierarchical Adaptive Control for Collaborative Manipulation of a Rigid Object by Quadrupedal RobotsDespite the potential benefits of collaborative robots, effective manipulation tasks with quadruped robots remain difficult to realize. In this paper, we propose a hierarchical control system that can handle real-world collaborative manipulation tasks, including uncertainties arising from object properties, shape, and terrain. Our approach consists of three levels of controllers. Firstly, an adaptive controller computes the required force and moment for object manipulation without prior knowledge of the object's properties and terrain. The computed force and moment are then optimally distributed between the team of quadruped robots using a Quadratic Programming (QP)-based controller. This QP-based controller optimizes each robot's contact point location with the object while satisfying constraints associated with robot-object contact. Finally, a decentralized loco-manipulation controller is designed for each robot to apply manipulation force while maintaining the robot's stability. We successfully validated our approach in a high-fidelity simulation environment where a team of quadruped robots manipulated an unknown object weighing up to 18 kg on different terrains while following the desired trajectory.more » « less
-
Model Predictive Control (MPC) is a popular strategy for controlling robots but is difficult for systems with contact due to the complex nature of hybrid dynamics. To implement MPC for systems with contact, dynamic models are often simplified or contact sequences fixed in time in order to plan trajectories efficiently. In this work, we propose the Hybrid iterative Linear Quadratic Regulator (HiLQR), which extends iLQR to a class of piecewisesmooth hybrid dynamical systems with state jumps. This is accomplished by 1) allowing for changing hybrid modes in the forward pass, 2) using the saltation matrix to update the gradient information in the backwards pass, and 3) using a reference extension to account for mode mismatch. We demonstrate these changes on a variety of hybrid systems and compare the different strategies for computing the gradients. We further show how HiLQR can work in a MPC fashion (HiLQR MPC) by 1) modifying how the cost function is computed when contact modes do not align, 2) utilizing parallelizations when simulating rigid body dynamics, and 3) using efficient analytical derivative computations of the rigid body dynamics. The result is a system that can modify the contact sequence of the reference behavior and plan whole body motions cohesively – which is crucial when dealing with large perturbations. HiLQR MPC is tested on two systems: first, the hybrid cost modification is validated on a simple actuated bouncing ball hybrid system. Then HiLQR MPC is compared against methods that utilize centroidal dynamic assumptions on a quadruped robot (Unitree A1). HiLQR MPC outperforms the centroidal methods in both simulation and hardware tests.more » « less
-
Grasping is a crucial task in robotics, necessitating tactile feedback and reactive grasping adjustments for robust grasping of objects under various conditions and with differing physical properties. In this paper, we introduce LeTac-MPC, a learning-based model predictive control (MPC) for tactile-reactive grasping. Our approach enables the gripper to grasp objects with different physical properties on dynamic and force-interactive tasks. We utilize a vision-based tactile sensor, GelSight [1], which is capable of perceiving high-resolution tactile feedback that contains information on the physical properties and states of the grasped object. LeTac-MPC incorporates a differentiable MPC layer designed to model the embeddings extracted by a neural network (NN) from tactile feedback. This design facilitates convergent and robust grasping control at a frequency of 25 Hz. We propose a fully automated data collection pipeline and collect a dataset only using standardized blocks with different physical properties. However, our trained controller can generalize to daily objects with different sizes, shapes, materials, and textures. The experimental results demonstrate the effectiveness and robustness of the proposed approach. We compare LeTac-MPC with two purely model-based tactile-reactive controllers (MPC and PD) and open-loop grasping. Our results show that LeTac-MPC has optimal performance in dynamic and force-interactive tasks and optimal generalizability. We release our code and dataset at https://github.com/ZhengtongXu/LeTac-MPC.more » « less
An official website of the United States government

