skip to main content


Title: Spatial and Temporal Splitting Heuristics for Multi-Robot Motion Planning
In this work, we systematically examine the application of spatio-temporal splitting heuristics to the Multi-Robot Motion Planning (MRMP) problem in a graph-theoretic setting: a problem known to be NP-hard to optimally solve. Following the divide-and-conquer principle, we design multiple spatial and temporal splitting schemes that can be applied to any existing MRMP algorithm, including integer programming solvers and Enhanced Conflict Based Search, in an orthogonal manner. The combination of a good baseline MRMP algorithm with a proper splitting heuristic proves highly effective, allowing the resolution of problems 10+ times than what is possible previously, as corroborated by extensive numerical evaluations. Notably, spatial partition of problem fusing with the temporal splitting heuristic and the enhanced conflict based search (ECBS) algorithm increases the scalability of ECBS on large and challenging DAO maps by 5–15 folds with negligible impact on solution optimality.  more » « less
Award ID(s):
1845888 1734419
NSF-PAR ID:
10219065
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE International Conference on Robotics and Automation
ISSN:
1049-3492
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We consider a variant of the Multi-Agent Path-Finding problem that seeks both task assignments and collision-free paths for a set of agents navigating on a graph, while minimizing the sum of costs of all agents. Our approach extends Conflict-Based Search (CBS), a framework that has been previously used to find collision-free paths for a given fixed task assignment. Our approach is based on two key ideas: (i) we operate on a search forest rather than a search tree; and (ii) we create the forest on demand, avoiding a factorial explosion of all possible task assignments. We show that our new algorithm, CBS-TA, is complete and optimal. The CBS framework allows us to extend our method to ECBS-TA, a bounded suboptimal version. We provide extensive empirical results comparing CBS-TA to task assignment followed by CBS, Conflict-Based Min-Cost-Flow (CBM), and an integer linear program (ILP) solution, demonstrating the advantages of our algorithm. Our results highlight a significant advantage in jointly optimizing the task assignment and path planning for very dense cases compared to the traditional method of solving those two problems independently. For large environments with many robots we show that the traditional approach is reasonable, but that we can achieve similar results with the same runtime but stronger suboptimality guarantees. 
    more » « less
  2. Abstract

    Thep‐median problem (PMP) is one of the most applied location problems in urban and regional planning. As an NP‐hard problem, the PMP remains challenging to solve optimally, especially for large‐sized problems. A number of heuristics have been developed to obtain PMP solutions in a fast manner. Among the heuristics, the Teitz and Bart (TB) algorithm has been found effective for finding high‐quality solutions. In this article, we present a spatial‐knowledge‐enhanced Teitz and Bart (STB) heuristic method for solving PMPs. The STB heuristic prioritizes candidate facility sites to be examined in the solution set based on the spatial distribution of demand and service provision. Tests based on a range of PMPs demonstrate the effectiveness of the STB heuristic. This new algorithm can be incorporated into current commercial GIS packages to solve a wide range of location‐allocation problems.

     
    more » « less
  3. null (Ed.)
    In many real-world scenarios, the time it takes for a mobile agent, e.g., a robot, to move from one location to another may vary due to exogenous events and be difficult to predict accurately. Planning in such scenarios is challenging, especially in the context of Multi-Agent Pathfinding (MAPF), where the goal is to find paths to multiple agents and temporal coordination is necessary to avoid collisions. In this work, we consider a MAPF problem with this form of time uncertainty, where we are only given upper and lower bounds on the time it takes each agent to move. The objective is to find a safe solution, which is a solution that can be executed by all agents and is guaranteed to avoid collisions. We propose two complete and optimal algorithms for finding safe solutions based on well-known MAPF algorithms, namely, A* with Operator Decomposition (A* + OD) and Conflict-Based Search (CBS). Experimentally, we observe that on several standard MAPF grids the CBS-based algorithm performs better. We also explore the option of online replanning in this context, i.e., modifying the agents' plans during execution, to reduce the overall execution cost. We consider two online settings: (a) when an agent can sense the current time and its current location, and (b) when the agents can also communicate seamlessly during execution. For each setting, we propose a replanning algorithm and analyze its behavior theoretically and empirically. Our experimental evaluation confirms that indeed online replanning in both settings can significantly reduce solution cost. 
    more » « less
  4. The offline pickup and delivery problem with time windows (PDPTW) is a classical combinatorial optimization problem in the transportation community, which has proven to be very challenging computationally. Due to the complexity of the problem, practical problem instances can be solved only via heuristics, which trade-off solution quality for computational tractability. Among the various heuristics, a common strategy is problem decomposition, that is, the reduction of a large-scale problem into a collection of smaller sub-problems, with spatial and temporal decompositions being two natural approaches. While spatial decomposition has been successful in certain settings, effective temporal decomposition has been challenging due to the difficulty of stitching together the sub-problem solutions across the decomposition boundaries. In this work, we introduce a novel temporal decomposition scheme for solving a class of PDPTWs that have narrow time windows, for which it is able to provide both fast and high-quality solutions. We utilize techniques that have been popularized recently in the context of online dial-a-ride problems along with the general idea of rolling horizon optimization. To the best of our knowledge, this is the first attempt to solve offline PDPTWs using such an approach. To show the performance and scalability of our framework, we use the optimization of paratransit services as a motivating example. Due to the lack of benchmark solvers similar to ours (i.e., temporal decomposition with an online solver), we compare our results with an offline heuristic algorithm using Google OR-Tools. In smaller problem instances (with an average of 129 requests per instance), the baseline approach is as competitive as our framework. However, in larger problem instances (approximately 2,500 requests per instance), our framework is more scalable and can provide good solutions to problem instances of varying degrees of difficulty, while the baseline algorithm often fails to find a feasible solution within comparable compute times. 
    more » « less
  5. Unmanned aerial vehicles (UAVs) can supplement the existing ground-based heterogeneous cellular networks (Het-Nets), by replacing/supporting damaged infrastructure, providing real-time video support at the site of an emergency, offloading traffic in congested areas, extending coverage, and filling coverage gaps. In this paper, we introduce distributed algorithms that leverage UAV mobility, enhanced inter-cell interference coordination (ICIC), and cell range expansion (CRE) techniques defined in 3GPP Release-10 and 3GPP Release-11. Through Monte-Carlo simulations, we compare the system-wide 5th percentile spectral efficiency (5pSE) while optimizing the performance using a brute force algorithm, a heuristic-based sequential algorithm, and a deep Q-learning algorithm. The autonomous UAVs jointly optimize their location, ICIC parameters, and CRE to maximize 5pSE gains and minimize the outage probability. Our results show that the ICIC technique relying on a simple heuristic outperforms the ICIC technique based on deep Q-learning. Taking advantage of the multiple optimization parameters for interference coordination, the heuristic based ICIC technique can achieve 5pSE values that are reasonably close to those achieved with exhaustive brute force search techniques, at a significantly lower computational complexity. 
    more » « less