This content will become publicly available on December 10, 2024
- Award ID(s):
- 1939579
- PAR ID:
- 10498098
- Publisher / Repository:
- NeurIPS 2023
- Date Published:
- Journal Name:
- 37th Conference on Neural Information Processing Systems (NeurIPS 2023)
- Format(s):
- Medium: X
- Location:
- New Orleans, LA, USA
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)We propose novel approaches to estimating student preferences with data from matching mechanisms, especially the Gale-Shapley deferred acceptance. Even if the mechanism is strategy-proof, assuming that students truthfully rank schools in applications may be restrictive. We show that when students are ranked strictly by some ex ante known priority index (e.g., test scores), stability is a plausible and weaker assumption, implying that every student is matched with her favorite school/college among those she qualifies for ex post. The methods are illustrated in simulations and applied to school choice in Paris. We discuss when each approach is more appropriate in real-life settings. (JEL D11, D12, D82, I23)more » « less
-
We revisit the well-studied problem of designing mechanisms for one-sided matching markets, where a set of n agents needs to be matched to a set of n heterogeneous items. Each agent i has a value vij for each item j, and these values are private information that the agents may misreport if doing so leads to a preferred outcome. Ensuring that the agents have no incentive to misreport requires a careful design of the matching mechanism, and mechanisms proposed in the literature mitigate this issue by eliciting only the ordinal preferences of the agents, i.e., their ranking of the items from most to least preferred. However, the efficiency guarantees of these mechanisms are based only on weak measures that are oblivious to the underlying values. In this paper we achieve stronger performance guarantees by introducing a mechanism that truthfully elicits the full cardinal preferences of the agents, i.e., all of the vij values. We evaluate the performance of this mechanism using the much more demanding Nash bargaining solution as a benchmark, and we prove that our mechanism significantly outperforms all ordinal mechanisms (even non-truthful ones). To prove our approximation bounds, we also study the population monotonicity of the Nash bargaining solution in the context of matching markets, providing both upper and lower bounds which are of independent interest.more » « less
-
A cache memory unit needs to be shared among n strategic agents. Each agent has different preferences over the files to be brought into memory. The goal is to design a mechanism that elicits these preferences in a truthful manner and outputs a fair and efficient memory allocation. A trivially truthful and fair solution would isolate each agent to a 1/n fraction of the memory. However, this could be very inefficient if the agents have similar preferences and, thus, there is room for cooperation. On the other hand, if the agents are not isolated, unless the mechanism is carefully designed, they have incentives to misreport their preferences and free ride on the files that others bring into memory. In this paper we explore the power and limitations of truthful mechanisms in this setting.We demonstrate that mechanisms blocking agents from accessing parts of the memory can achieve improved efficiency guarantees, despite the inherent inefficiencies of blocking.more » « less
-
Matching markets consist of two disjoint sets of agents, where each agent has a preference list over agents on the other side. The primary objective is to find a stable matching between the agents such that no unmatched pair of agents prefer each other to their matched partners. The incompatibility between stability and strategy-proofness in this domain gives rise to a variety of strategic behavior of agents, which in turn may influence the resulting matching. In this paper, we discuss fundamental properties of stable matchings, review essential structural observations, survey key results in manipulation algorithms and their game-theoretical aspects, and more importantly, highlight a series of open research questions.
-
We initiate the study of information elicitation mechanisms for a crowd containing both self-interested agents, who respond to incentives, and adversarial agents, who may collude to disrupt the system. Our mechanisms work in the peer prediction setting where ground truth need not be accessible to the mechanism or even exist. We provide a meta-mechanism that reduces the design of peer prediction mechanisms to a related robust learning problem. The resulting mechanisms are ϵ-informed truthful, which means truth-telling is the highest paid ϵ-Bayesian Nash equilibrium (up to ϵ-error) and pays strictly more than uninformative equilibria. The value of ϵ depends on the properties of robust learning algorithm, and typically limits to 0 as the number of tasks and agents increase. We show how to use our meta-mechanism to design mechanisms with provable guarantees in two important crowdsourcing settings even when some agents are self-interested and others are adversarial.more » « less