skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Characterization of Terpenoids from the Ambrosia Beetle Symbiont and Laurel Wilt Pathogen Harringtonia lauricola
Little is known concerning terpenoids produced by members of the fungal order Ophiostomales, with the member Harringtonia lauricola having the unique lifestyle of being a beetle symbiont but potentially devastating tree pathogen. Nine known terpenoids, including six labdane diterpenoids (1–6) and three hopane triterpenes (7–9), were isolated from H. lauricola ethyl acetate (EtOAc) extracts for the first time. All compounds were tested for various in vitro bioactivities. Six compounds, 2, 4, 5, 6, 7, and 9, are described functionally. Compounds 2, 4, 5, and 9 expressed potent antiproliferative activity against the MCF-7, HepG2 and A549 cancer cell lines, with half-maximal inhibitory concentrations (IC50s) ~12.54–26.06 μM. Antimicrobial activity bioassays revealed that compounds 4, 5, and 9 exhibited substantial effects against Gram-negative bacteria (Escherichia coli and Ralstonia solanacearum) with minimum inhibitory concentration (MIC) values between 3.13 and 12.50 μg/mL. Little activity was seen towards Gram-positive bacteria for any of the compounds, whereas compounds 2, 4, 7, and 9 expressed antifungal activities (Fusarium oxysporum) with MIC values ranging from 6.25 to 25.00 μg/mL. Compounds 4, 5, and 9 also displayed free radical scavenging abilities towards 2,2-diphenyl-1-picrylhydrazyl (DPPH) and superoxide (O2−), with IC50 values of compounds 2, 4, and 6 ~3.45–14.04 μg/mL and 22.87–53.31 μg/mL towards DPPH and O2−, respectively. These data provide an insight into the biopharmaceutical potential of terpenoids from this group of fungal insect symbionts and plant pathogens.  more » « less
Award ID(s):
2418026
PAR ID:
10498105
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
MDPI
Date Published:
Journal Name:
Journal of Fungi
Volume:
9
Issue:
12
ISSN:
2309-608X
Page Range / eLocation ID:
1175
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. From a library of compounds, 11 hit antibacterial agents have been identified as potent anti-Gram-positive bacterial agents. These pyrazole derivatives are active against two groups of pathogens, staphylococci and enterococci, with minimum inhibitory concentration (MIC) values as low as 0.78 μg/mL. These potent compounds showed bactericidal action, and some were effective at inhibiting and eradicating Staphylococcus aureus and Enterococcus faecalis biofilms. Real-time biofilm inhibition by the potent compounds was studied, by using Bioscreen C. These lead compounds were also very potent against S. aureus persisters as compared to controls, gentamycin and vancomycin. In multiple passage studies, bacteria developed little resistance to these compounds (no more than 2 × MIC). The plausible mode of action of the lead compounds is the permeabilization of the cell membrane determined by flow cytometry and protein leakage assays. With the detailed antimicrobial studies, both in planktonic and biofilm contexts, some of these potent compounds have the potential for further antimicrobial drug development. 
    more » « less
  2. We investigated the activity of the tuberculosis drug SQ109 against 16 fungal pathogens: Candida albicans, C. auris, C. glabrata, C. guilliermondi, C. kefyr, C. krusei, C. lusitaniae, C. parapsilosis, C. tropicalis, Cryptococcus neoformans, Rhizopus spp., Mucor spp., Fusarium spp., Coccidioides spp., Histoplasma capsulatum and Aspergillus fumigatus. MIC values varied widely (125 ng/mL to >64 μg/mL) but in many cases we found promising (MIC ∼ 4 μg/mL) activity as well as MFC/MIC ratios of ∼ 2. SQ109 metabolites were inactive. The activity of 12 analogs of SQ109 against Saccharomyces cerevisiae correlated with protonophore uncoupling activity, suggesting mitochondrial targeting, consistent with the observation that growth inhibition was rescued by agents which inhibit ROS species accumulation. SQ109 disrupted H+/Ca2+ homeostasis in S. cerevisiae vacuoles, and there was synergy (FICI ∼ 0.26) with pitavastatin, indicating involvement of isoprenoid biosynthesis pathway inhibition. SQ109 is, therefore, a potential antifungal agent with multitarget activity. 
    more » « less
  3. The emerging fungal amphibian pathogen, Batrachochytrium salamandrivorans (Bsal), is currently spreading across Europe and given its estimated invasion potential, has the capacity to decimate salamander populations worldwide. Fungicides are a promising in situ management strategy for Bsal due to their ability to treat the environment and infected individuals. However, antifungal drugs or pesticides could adversely affect the environment and non-target hosts, thus identifying safe, effective candidate fungicides for in situ treatment is needed. Here, we estimated the inhibitory fungicidal efficacy of five plant-derived fungicides (thymol, curcumin, allicin, 6-gingerol, and Pond Pimafix®) and one chemical fungicide (Virkon® Aquatic) against Bsal zoospores in vitro. We used a broth microdilution method in 48-well plates to test the efficacy of six concentrations per fungicide on Bsal zoospore viability. Following plate incubation, we performed cell viability assays and agar plate growth trials to estimate the minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of each fungicide. All six fungicides exhibited inhibitory and fungicidal effects against Bsal growth, with estimated MIC concentrations ranging from 60 to 0.156 μg/mL for the different compounds. Allicin showed the greatest efficacy (i.e., lowest MIC and MFC) against Bsal zoospores followed by curcumin, Pond Pimafix®, thymol, 6-gingerol, and Virkon® Aquatic, respectively. Our results provide evidence that plant-derived fungicides are effective at inhibiting and killing Bsal zoospores in vitro and may be useful for in situ treatment. Additional studies are needed to estimate the efficacy of these fungicides at inactivating Bsal in the environment and treating Bsal-infected amphibians. 
    more » « less
  4. null (Ed.)
    ABSTRACT The ability of vancomycin-arginine (V-r) to extend the spectrum of activity of glycopeptides to Gram-negative bacteria was investigated. Its MIC towards Escherichia coli , including β-lactamase expressing Ambler classes A, B, and D, was 8 to 16 μg/ml. Addition of 8 times the MIC of V-r to E. coli was acutely bactericidal and associated with a low frequency of resistance (<2.32 × 10 −10 ). In vivo , V-r markedly reduced E. coli burden by >7 log 10 CFU/g in a thigh muscle model. These data warrant further development of V-r in combatting E. coli , including resistant forms. 
    more » « less
  5. Seven new coumarinolignans, walthindicins A–F (1a, 1b, 2–5, 7), along with five known analogs (6, 8–11), were isolated from the roots of Waltheria indica. The structures of the new compounds are determined by detailed nuclear magnetic resonance (NMR), circular dichroism (CD) with extensive computational support, and mass spectroscopic data interpretation. Compounds were tested for their antioxidant activity in Human Cervical Cancer cells (HeLa cells). Compounds 1a and 6 showed higher reactive oxygen species (ROS) inhibitory activity at 20 μg/mL when compared with other natural compound-based antioxidants such as ascorbic acid. Considering the role of ROS in nuclear-factor kappa B (NF-κB) activation, compounds 1a and 6 were evaluated for NF-κB inhibitory activity and showed a concentration-dependent inhibition in Human Embryonic Kidney 293 cells (Luc-HEK-293). 
    more » « less