skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Mid‐Lithospheric Discontinuity Detected Beneath 155 Ma Western Pacific Seafloor Using Sp Receiver Functions
Abstract This study probes the lithosphere‐asthenosphere system beneath 155 Ma Pacific seafloor using teleseismic S‐to‐p receiver functions at the Pacific Lithosphere Anisotropy and Thickness Experiment project ocean‐bottom‐seismometers. Within the lithosphere, a significant velocity decrease at 33–50 km depth is observed. This mid‐lithospheric discontinuity is consistent with the velocity contrast between the background mantle and thin, trapped layers of crystallized partial melt, in the form of either dolomite or garnet granulite. These melts possibly originated from deeper asthenospheric melting beneath the flanks of spreading centers, and were transported within the cooling lithosphere. A positive velocity increase of 3%–6% is observed at 130–155 km depth and is consistent with the base of a layer with partial melt in the asthenosphere. A shear velocity decrease associated with the lithosphere‐asthenosphere boundary at 95–115 km depth is permitted by the data, but is not required.  more » « less
Award ID(s):
2241064 1832371
PAR ID:
10498306
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
51
Issue:
5
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The thermal regime of continental lithosphere plays a fundamental role in controlling the behavior of tectonic plates. In this work, we assess the thermal state of the North American upper mantle by combining shear‐wave velocity models, calculated using data from the EarthScope facility, with empirically derived anelasticity models and basalt thermobarometry. We estimate the depth of the thermal lithosphere‐asthenosphere boundary (LAB), defined as the intersection of a geotherm with the 1300°C adiabat. Results show lithospheric thicknesses across the contiguous US vary between ∼40 km and >200 km. The thinnest thermal lithosphere is observed in the tectonically active western US and the thickest lithosphere in the midcontinent. By combining geotherm estimates with solidus curves for peridotite, we show that a pervasive partial melt zone is common within the western US upper mantle and that partial melt is absent in the eastern and central US without significant metasomatism. 
    more » « less
  2. Abstract The Colorado Plateau and its surroundings serve as an archetypal case to investigate the interaction of mantle melting processes and lithospheric structure. It has been hypothesized that widespread Cenozoic volcanism indicates the encroachment of the convective upwelling of asthenosphere toward the Plateau center. In this study, we generate a Common Conversion Point (CCP) stack of S‐to‐p (Sp) receiver functions to image the locations of lithospheric discontinuities in the southwestern United States. Our results are broadly similar to prior work, showing a strong and continuous Negative Velocity Gradient (NVG) consistent with the Lithosphere‐Asthenosphere Boundary (LAB) over much of the study area. However, with several methodological improvements, we are able to obtain more reliable NVG depth picks below the Colorado Plateau where the LAB becomes weaker, deeper, and broader. We compare the inferred topography of NVGs with the locations of volcanoes, and find that the majority of recent volcanoes are co‐located with lithosphere that is ∼80 km thick. This appears to be the critical depth at which partial melt from upwelling asthenosphere pooling at the base of (or within) the lithosphere may percolate to the surface. We compare our CCP profiles with magma equilibration conditions determined from petrologic analysis and find good agreement between the depth of NVGs and depth of magma equilibration. This analysis provides insight into the progression of magmatism and lithospheric loss toward the center of the Colorado Plateau, and demonstrates how small‐scale processes like melting influence lithosphere‐asthenosphere interactions that persist over large temporal and spatial scales. 
    more » « less
  3. Abstract In the southwest USA, the Colorado Plateau is encircled by Late Cenozoic volcanic fields, most of which have eruptive histories that are marginally constrained. Establishing the spatiotemporal evolution of these volcanic fields is key for quantifying volcanic hazards and understanding magma genesis. The Black Rock Desert (BRD) volcanic field covers ∼700 km2of west‐central Utah. We present 46 new40Ar/39Ar ages from the BRD ranging from 3.7 Ma to 8 ka, which includes40Ar/39Ar plateau ages from olivine separates. These new ages are combined with 13 recently published40Ar/39Ar ages from the Mineral Mountains to evaluate the spatiotemporal evolution of all five BRD subfields. The oldest lavas and domes are located to the southwest, whereas the youngest lavas, which are only a few hundred years old, are located ∼30 km to the NNE. However, BRD vent migration patterns over the last 2.5 Ma are non‐uniform. They are also not consistent with North American Plate motion over a partial melt zone nor have they migrated toward the center of the Colorado Plateau. BRD eruptions are almost always coincident with mapped Quaternary faults. A shear‐velocity (Vs) model beneath the BRD indicates that the lithosphere has been thinned and that asthenospheric melt has coalesced at the lithosphere‐asthenosphere boundary, which is supported by the trace element compositions of BRD lavas that signify that they have incorporated continental lithospheric mantle. Our data and observations suggest that the asthenosphere‐lithosphere‐volcanic system in the BRD is inherently complex. 
    more » « less
  4. Abstract Seismic tomography observations show a low‐velocity feature in the upper mantle beneath eastern North America known as the Northern Appalachian Anomaly (NAA). Proposed models for the formation of the NAA include a remnant high‐temperature feature resulting from the passage of the Great Meteor Hotspot, edge‐driven convection, and ongoing asthenospheric upwelling. We investigate the structure of the lithosphere above the central portion of the NAA using data from the New England Seismic Transects (NEST) experiment. Ps receiver functions reveal two consistent interfaces beneath the dense northern line of NEST: the Moho (the base of the crust) and a deeper negative velocity gradient (NVG) feature located at depths between 60 and 110 km. We consider several potential explanations for this NVG feature; based on comparisons with previous results, we propose that it likely corresponds to the lithosphere‐asthenosphere boundary. Our results indicate that the lithosphere beneath New England is nonuniform and has likely been thinned. 
    more » « less
  5. Abstract Abrupt velocity gradients in the upper mantle, detectable by receiver functions (RF) techniques, have been known to exist down to the depths of ∼110 km beneath northeastern North America. Comparisons with the surface wave velocity models have designated some negative velocity gradients (NVGs) as the lithosphere‐asthenosphere boundary (LAB), delineating a relatively thin lithosphere beneath this region. This work presents a systematic survey of upper mantle layering in seismic properties using P‐S RF analysis at 62 long‐running sites with dense lateral sampling. We examine both radial and transverse component RF for indicators of seismic anisotropy and adopt the notion of seismic attributes, utilized in active‐source seismology, to characterize the spatial distribution of directionally variant and invariant signal components. We confirm a widespread presence of NVGs at depths 60–100 km throughout the region, consistent with previous studies using mode‐converted body waves. We also find numerous converting boundaries that reflect changes in directional variation (anisotropy) of seismic velocity, indicating complexity of rock texture in the upper mantle. Some of these boundaries appear as deep as 185 km, implying that the lithosphere extends much deeper than the widespread NVGs would suggest. In this, our results agree with recent estimates of the lithospheric thickness in thermodynamically consistent models combining seismic, gravity, and heat flow constraints. 
    more » « less