skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Mapping the Thermal Lithosphere and Melting Across the Continental US
Abstract The thermal regime of continental lithosphere plays a fundamental role in controlling the behavior of tectonic plates. In this work, we assess the thermal state of the North American upper mantle by combining shear‐wave velocity models, calculated using data from the EarthScope facility, with empirically derived anelasticity models and basalt thermobarometry. We estimate the depth of the thermal lithosphere‐asthenosphere boundary (LAB), defined as the intersection of a geotherm with the 1300°C adiabat. Results show lithospheric thicknesses across the contiguous US vary between ∼40 km and >200 km. The thinnest thermal lithosphere is observed in the tectonically active western US and the thickest lithosphere in the midcontinent. By combining geotherm estimates with solidus curves for peridotite, we show that a pervasive partial melt zone is common within the western US upper mantle and that partial melt is absent in the eastern and central US without significant metasomatism.  more » « less
Award ID(s):
1829520
PAR ID:
10368824
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
48
Issue:
7
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The existence of a thin, weak asthenospheric layer beneath Earth’s lithospheric plates is consistent with existing geological and geophysical constraints, including Pleistocene glacio-isostatic adjustment, modeling of gravity anomalies, studies of seismic anisotropy, and post-seismic rebound. Mantle convection models suggest that a pronounced weak zone beneath the upper thermal boundary layer (lithosphere) may be essential to the plate tectonic style of convection found on Earth. The asthenosphere is likely related to partial melting and the presence of water in the sub-lithospheric mantle, further implying that the long-term evolution of the Earth may be controlled by thermal regulation and volatile recycling that maintain a geotherm that approaches the wet mantle solidus at asthenospheric depths. 
    more » « less
  2. Abstract Mid‐lithosphere discontinuities are seismic interfaces likely located within the lithospheric mantle of stable cratons, which typically represent velocities decreasing with depth. The origins of these interfaces are poorly understood due to the difficulties in both characterizing them seismically and reconciling the observations with thermal‐chemical models of cratons. Metasomatism of the cratonic lithosphere has been reported by numerous geochemical and petrological studies worldwide, yet its seismic signature remains elusive. Here, we identify two distinct mid‐lithosphere discontinuities at ∼87 and ∼117 km depth beneath the eastern Wyoming craton and the southwestern Superior craton by analyzing seismic data recorded by two longstanding stations. Our waveform modeling shows that the shallow and deep interfaces represent isotropic velocity drops of 2%–8% and 4%–9%, respectively, depending on the contributions from changes in radial anisotropy and density. By building a thermal‐chemical model including the regional xenolith thermobarometry constraints and the experimental phase‐equilibrium data of mantle metasomatism, we show that the shallow interface probably represents the metasomatic front, below which hydrous minerals such as amphibole and phlogopite are present, whereas the deep interface may be caused by the onset of carbonated partial melting. The hydrous minerals and melts are products of mantle metasomatism, with CO2‐H2O‐rich siliceous melt as a probable metasomatic reagent. Our results suggest that mantle metasomatism is probably an important cause of mid‐lithosphere discontinuities worldwide, especially near craton boundaries, where the mantle lithosphere may be intensely metasomatized by fluids and melts released by subducting slabs. 
    more » « less
  3. Abstract Although seismic velocity and electrical conductivity are both sensitive to temperature, thermal lithosphere properties are derived almost exclusively from seismic data because conductivity is often too strongly affected by minor highly conductive phases to be a reliable indicator of temperature. However, in certain circumstances, electrical observations can provide strong constraints on mantle temperatures. In the southeastern United States (SEUS), magnetotelluric (MT) data require high resistivity values (>300 Ωm) to at least 200‐km depth. As dry mantle mineral conduction laws provide an upper bound on temperature for an observed resistivity value, the only interpretation is that lithospheric temperatures (<1330 °C) persist to 200 km. However, seismic tomography shows that velocities in this region are generally slightly slow with respect to references models; this observation has led to a view of relatively thin (<150 km), eroded thermal lithosphere beneath the SEUS. We show that MT and seismic (tomography, attenuation, receiver function) results are consistent with thick (~200 km), coherent thermal lithosphere in this region. Reduced seismic velocities (relative to reference models) can be explained by considering the effect of finite grain size (anelasticity). Calculated velocity as a function of temperature is overall slower when including anelastic effects, even at reasonable grain sizes of 1 mm to 1 cm; this permits mantle temperatures that are colder than would typically be inferred. We argue for a geodynamic scenario in which the present thermal lithosphere in the SEUS formed in association with the Central Atlantic Magmatic Province and has subsequently survived intact for ~200 Ma. 
    more » « less
  4. Abstract This study probes the lithosphere‐asthenosphere system beneath 155 Ma Pacific seafloor using teleseismic S‐to‐p receiver functions at the Pacific Lithosphere Anisotropy and Thickness Experiment project ocean‐bottom‐seismometers. Within the lithosphere, a significant velocity decrease at 33–50 km depth is observed. This mid‐lithospheric discontinuity is consistent with the velocity contrast between the background mantle and thin, trapped layers of crystallized partial melt, in the form of either dolomite or garnet granulite. These melts possibly originated from deeper asthenospheric melting beneath the flanks of spreading centers, and were transported within the cooling lithosphere. A positive velocity increase of 3%–6% is observed at 130–155 km depth and is consistent with the base of a layer with partial melt in the asthenosphere. A shear velocity decrease associated with the lithosphere‐asthenosphere boundary at 95–115 km depth is permitted by the data, but is not required. 
    more » « less
  5. null (Ed.)
    Continental arcs in Cordilleran orogenic systems display episodic changes in magma production rate, alternating between flare ups (70–90 km3 km􀀀 1 Myr􀀀 1) and lulls (< 20 km3 km􀀀 1 Myr􀀀 1) on timescales of tens of millions of years. Arc segments or individual magmatic suites may have even higher rates, up several 100 s of km3 km􀀀 1 Myr􀀀 1, during flare ups. These rates are largely determined by estimating volumes of arc crust, but do not reflect melt production from the mantle. The bulk of mantle-derived magmas are recycled back into the mantle by delamination of arc roots after differentiation in the deep crust. Mantle-derived melt production rates for continental arcs are estimated to be 140–215 km3 km􀀀 1 Myr􀀀 1 during flare ups and ≤ 15 km3 km􀀀 1 Myr􀀀 1 during lulls. Melt production rates averaged over multiple magmatic cycles are consistent with independent estimates for partial melting of the mantle wedge in subduction zones, however, the rates during flare ups and lulls are both anomalously high and anomalously low, respectively. The difference in mantle-derived melt production between flare ups and lulls is larger than predicted by petrologic and numerical models that explore the range of globally observed subduction parameters (e.g., convergence rate, height of the mantle wedge). This suggests that other processes are required to increase magmatism during flare ups and suppress magmatism during lulls. There are many viable explanations, but one possibility is that crystallized melts from the asthenospheric mantle wedge are temporarily stored in the deep lithosphere during lulls and then remobilized during flare ups. Basaltic melts may stall in the mantle lithosphere in inactive parts of the arc system, like the back-arc, refertilizing the mantle lithosphere and suppressing melt delivery to the lower crust. Subsequent landward arc migration (i.e., toward the interior of the continent) may encounter such refertilized mantle lithosphere magma source regions, contributing to magmatic activity during a flare up. A review of continental arcs globally suggests that flare ups commonly coincide with landward arc migration and that this migration may start tens of millions of years before the flare up occurs. The region of magmatic activity, or arc width, can also expand significantly during a flare up. Arc migration or expansion into different mantle source regions and across lithospheric and crustal boundaries can cause temporal shifts in the radiogenic isotopic composition of magmatism. In the absence of arc migration, temporal shifts are more muted. Isotopic studies of mantle xenoliths and exposures of deep arc crust suggest that that primary, mantle-derived magmas generated during flare ups reflect substantial contributions from the subcontinental mantle lithosphere. Arc migration may be caused by a variety of mechanisms, including slab anchoring or slab folding in the mantle transition zone that could generate changes in slab dip. Episodic slab shallowing is associated with many tectonic processes in Cordilleran orogenic systems, like alternations between shortening and extension in the upper plate. Studies of arc migration may help to link irregular magmatic production in continental arcs with geodynamic models for orogenic cyclicity. 
    more » « less