skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Role of a Neutron Component in the Photospheric Emission of Long-duration Gamma-Ray Burst Jets
Abstract Long-duration gamma-ray bursts (LGRBs), thought to be produced during core-collapse supernovae, may have a prominent neutron component in the outflow material. If present, neutrons can change how photons scatter in the outflow by reducing its opacity, thereby allowing the photons to decouple sooner than if there were no neutrons present. Understanding the details of this process could therefore allow us to probe the central engine of LGRBs, which is otherwise hidden. Here, we present results of the photospheric emission from an LGRB jet, using a combination of relativistic hydrodynamic simulations and radiative transfer postprocessing using Monte Carlo radiation transfer code. We control the size of the neutron component in the jet material by varying the equilibrium electron fractionYe, and we find that the presence of neutrons in the GRB fireball affects the Band parametersαandE0, while the picture with theβparameter is less clear. In particular, the break energyE0is shifted to higher energies. Additionally, we find that increasing the size of the neutron component also increases the total radiated energy of the outflow across multiple viewing angles. Our results not only shed light on LGRBs but are also relevant to short-duration gamma-ray bursts associated with binary neutron star mergers due to the likelihood of a prominent neutron component in such systems.  more » « less
Award ID(s):
1907955
PAR ID:
10498310
Author(s) / Creator(s):
; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
965
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 8
Size(s):
Article No. 8
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Hypernebulae are inflated by accretion-powered winds accompanying hyper-Eddington mass transfer from an evolved post-main-sequence star onto a black hole or neutron star companion. The ions accelerated at the termination shock—where the collimated fast disk winds and/or jet collide with the slower, wide-angled wind-fed shell—can generate high-energy neutrinos via hadronic proton–proton reactions, and photohadronic (pγ) interactions with the disk thermal and Comptonized nonthermal background photons. It has been suggested that some fast radio bursts (FRBs) may be powered by such short-lived jetted hyper-accreting engines. Although neutrino emission associated with the millisecond duration bursts themselves is challenging to detect, the persistent radio counterparts of some FRB sources—if associated with hypernebulae—could contribute to the high-energy neutrino diffuse background flux. If the hypernebula birth rate follows that of stellar-merger transients and common envelope events, we find that their volume-integrated neutrino emission—depending on the population-averaged mass-transfer rates—could explain up to ∼25% of the high-energy diffuse neutrino flux observed by the IceCube Observatory and the Baikal Gigaton Volume Detector Telescope. The time-averaged neutrino spectrum from hypernebula—depending on the population parameters—can also reproduce the observed diffuse neutrino spectrum. The neutrino emission could in some cases furthermore extend to >100 PeV, detectable by future ultra-high-energy neutrino observatories. The large optical depth through the nebula to Breit–Wheeler (γγ) interaction attenuates the escape of GeV–PeV gamma rays coproduced with the neutrinos, rendering these gamma-ray-faint neutrino sources, consistent with the Fermi observations of the isotropic gamma-ray background. 
    more » « less
  2. Abstract The joint detection of gravitational waves and the gamma-ray counterpart of a binary neutron star merger event, GW170817, unambiguously validates the connection between short gamma-ray bursts and compact binary object (CBO) mergers. We focus on a special scenario where short gamma-ray bursts produced by CBO mergers are embedded in disks of active galactic nuclei (AGNs), and we investigate the γ -ray emission produced in the internal dissipation region via synchrotron, synchrotron self-Compton, and external inverse Compton (EIC) processes. In this scenario, isotropic thermal photons from the AGN disks contribute to the EIC component. We show that a low-density cavity can be formed in the migration traps, leading to the embedded mergers producing successful GRB jets. We find that the EIC component would dominate the GeV emission for typical CBO mergers with an isotropic-equivalent luminosity of L j ,iso = 10 48.5 erg s −1 that are located close to the central supermassive black hole. Considering a long-lasting jet of duration T dur ∼ 10 2 –10 3 s, we find that the future Cherenkov Telescope Array (CTA) will be able to detect its 25–100 GeV emission out to a redshift z = 1.0. In the optimistic case, it is possible to detect the on-axis extended emission simultaneously with GWs within one decade using MAGIC, H.E.S.S., VERITAS, CTA, and LHAASO-WCDA. Early diagnosis of prompt emissions with Fermi-GBM and HAWC can provide valuable directional information for the follow-up observations. 
    more » « less
  3. Abstract We present the first seconds-long 2D general relativistic neutrino magnetohydrodynamic simulations of accretion-induced collapse (AIC) in rapidly rotating, strongly magnetized white dwarfs (WDs), which might originate as remnants of double-WD mergers. This study examines extreme combinations of magnetic fields and rotation rates, motivated both by the need to address the limitations of 2D axisymmetric simulations and to explore the physics of AIC under rare conditions that, while yet to be observationally confirmed, may be consistent with current theoretical models and account for unusual events. Under these assumptions, our results demonstrate that, if realizable, such systems can generate relativistic jets and neutron-rich outflows with properties consistent with long gamma-ray bursts (LGRBs) accompanied by kilonovae, such as GRB 211211A and GRB 230307A. These findings highlight the potential role of AIC in heavyr-process element production and offer a framework for understanding rare LGRBs associated with kilonova emission. Longer-duration 3D simulations are needed to fully capture magnetic field amplification, resolve instabilities, and determine the fate of the energy retained by the magnetar at the end of the simulations. 
    more » « less
  4. Abstract The origin of short gamma-ray bursts is associated with outflows powered by the remnant of a binary neutron star merger. This remnant can be either a black hole or a highly magnetized, fast-spinning neutron star, also known as a magnetar. Here we present the results of two relativistic magnetohydrodynamical simulations aimed at investigating the large-scale dynamics and propagation of magnetar collimated outflows through the medium surrounding the remnant. The first simulation evolves a realistic jet by injecting external simulation data, while the second evolves an analytical model jet with similar properties for comparison. We find that both outflows remain collimated and successfully emerge through the static medium surrounding the remnant. However, they fail to attain relativistic velocities and only reach a mean maximum speed of ∼0.7cfor the realistic jet and ∼0.6cfor the analytical jet. We also find that the realistic jet has a much more complex structure. The lack of highly relativistic speeds, which makes these jets unsuitable as short gamma-ray burst sources, is due to numerical limitations and is not general to all possible magnetar outflows. A jet like the one we study, however, could give rise to or augment a blue kilonova component. In addition, it would make the propagation of a relativistic jet easier, should one be launched after the neutron star collapses into a black hole. 
    more » « less
  5. Abstract The association of GRB170817A with GW170817 has confirmed the long-standing hypothesis that binary neutron star (BNS) mergers are the progenitors of at least some short gamma-ray bursts (SGRBs). This connection has ushered in an era in which broadband observations of SGRBs, together with measurements of the time delay between the gravitational waves and the electromagnetic radiation, allow for probing the properties of the emitting outflow and its engine to an unprecedented detail. Because the structure of the radiating outflow is molded by the interaction of a relativistic jet with the binary ejecta, it is of paramount importance to study the system in a realistic setting. Here we present a three-dimensional hydrodynamic simulation of a relativistic jet propagating in the ejecta of a BNS merger, which were computed with a general relativistic magnetohydrodynamic simulation. We find that the jet’s centroid oscillates around the axis of the system, due to inhomogeneities encountered in the propagation. These oscillations allow the jet to find the path of least resistance and travel faster than an identical jet in smooth ejecta. In our setup the breakout time is ∼0.6 s, which is comparable to the expected central engine duration in SGRBs and possibly a non-negligible fraction of the total delay between the gravitational and gamma-ray signals. Our simulation also shows that energy is carried in roughly equal amounts by the jet and by the cocoon, and that about 20% of the injected energy is transferred to the ejecta via mechanical work. 
    more » « less