skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Non-Galvin filters
We address the question of consistency strength of certain filters and ultrafilters which fail to satisfy the Galvin property. We answer questions [Benhamou and Gitik, Ann. Pure Appl. Logic 173 (2022) 103107; Questions 7.8, 7.9], [Benhamou et al., J. Lond. Math. Soc. 108(1) (2023) 190–237; Question 5] and improve theorem [Benhamou et al., J. Lond. Math. Soc. 108(1) (2023) 190–237; Theorem 2.3].  more » « less
Award ID(s):
2246703
PAR ID:
10498408
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
World Scientific
Date Published:
Journal Name:
Journal of Mathematical Logic
ISSN:
0219-0613
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We formulate a connection between a topological and a geometric category. The former is the idempotent completion of the (horizontal) trace of the affine Hecke category, while the latter is the equivariant derived category of the (semi-nilpotent) commuting stack. This provides a more precise and improved version of our proposal in Gorsky and Neguț (Proc Lond Math Soc (3) 126(6): 2013–2056, 2023). 
    more » « less
  2. Abstract We study the family of irreducible modules for quantum affine 𝔰 𝔩 n + 1 {\mathfrak{sl}_{n+1}}whose Drinfeld polynomials are supported on just one node of the Dynkin diagram. We identify all the prime modules in this family and prove a unique factorization theorem. The Drinfeld polynomials of the prime modules encode information coming from the points of reducibility of tensor products of the fundamental modules associated to A m {A_{m}}with m n {m\leq n}. These prime modules are a special class of the snake modules studied by Mukhin and Young. We relate our modules to the work of Hernandez and Leclerc and define generalizations of the category 𝒞 - {\mathscr{C}^{-}}. This leads naturally to the notion of an inflation of the corresponding Grothendieck ring. In the last section we show that the tensor product of a (higher order) Kirillov–Reshetikhin module with its dual always contains an imaginary module in its Jordan–Hölder series and give an explicit formula for its Drinfeld polynomial. Together with the results of [D. Hernandez and B. Leclerc,A cluster algebra approach toq-characters of Kirillov–Reshetikhin modules,J. Eur. Math. Soc. (JEMS) 18 2016, 5, 1113–1159] this gives examples of a product of cluster variables which are not in the span of cluster monomials. We also discuss the connection of our work with the examples arising from the work of [E. Lapid and A. Mínguez,Geometric conditions for \square-irreducibility of certain representations of the general linear group over a non-archimedean local field,Adv. Math. 339 2018, 113–190]. Finally, we use our methods to give a family of imaginary modules in type D 4 {D_{4}}which do not arise from an embedding of A r {A_{r}}with r 3 {r\leq 3}in D 4 {D_{4}}. 
    more » « less
  3. This article is a Commentary onMorelliet al. (2023),237: 1696–1710. 
    more » « less
  4. Abstract We prove foundational results about the set of homomorphisms from a finitely generated group to the collection of all fundamental groups of compact 3–manifolds and answer questions of Agol–Liu (J. Am. Math. Soc. 25(1):151–187, 2012) and Reid–Wang–Zhou (Acta Math. Sin. Engl. Ser. 18(1):157–172, 2002). 
    more » « less
  5. The goal of this article is twofold. First, we investigate the linearized Vlasov–Poisson system around a family of spatially homogeneous equilibria in the unconfined setting. Our analysis follows classical strategies from physics (Binney and Tremaine 2008, Galactic Dynamics,(Princeton University Press); Landau 1946, Acad. Sci. USSR. J. Phys.10,25–34; Penrose 1960,Phys. Fluids,3,258–65) and their subsequent mathematical extensions (Bedrossian et al 2022, SIAM J. Math. Anal.,54,4379–406; Degond 1986,Trans. Am. Math. Soc., 294,435–53; Glassey and Schaeffer 1994,Transp. Theory Stat. Phys.,23, 411–53; Grenier et al 2021, Math. Res. Lett., 28,1679–702; Han-Kwan et al, 2021, Commun. Math. Phys. 387, 1405–40; Mouhot and Villani 2011, Acta Math., 207, 29–201). The main novelties are a unified treatment of a broad class of analytic equilibria and the study of a class of generalized Poisson equilibria. For the former, this provides a detailed description of the associated Green’s functions, including in particular precise dissipation rates (which appear to be new), whereas for the latter we exhibit explicit formulas. Second, we review the main result and ideas in our recent work (Ionescu et al, 2022 on the full global nonlinear asymptotic stability of the Poisson equilibrium in R3 
    more » « less