Abstract Our previous studies (Shields et al 2020 J. Phys. B: At. Mol. Opt. Phys. 53 125101; Shields et al 2020 Euro. Phys. J. D 74 191) have predicted that the atom-fullerene hybrid photoionization properties for X = Cl, Br and I endohedrally confined in C 60 are different before and after an electron transfers from C 60 to the halogen. It was further found as a rule that the ionization dynamics is insensitive to the C 60 level the electron originates from to produce X − @ C 60 + . In the current study, we report an exception to this rule in F@C 60 . It is found that when the electron vacancy is situated in the C 60 level that participates in the hybridization in F − @ C 60 + , the mixing becomes dramatically large leading to strong modifications in the photoionization of the hybrid levels. This novel effect is fundamentally based on a level-crossing phenomenon driven by the electron transfer in F@C 60 . But when the vacancy is at any other pure level of C 60 , the level-invariance is retained showing weak hybridization. Even though this case of F@C 60 is an exception in the halogen@C 60 series, the phenomenon can be more general and can occur with compounds of other atoms caged in a variety of fullerenes. Possible experimental studies are suggested to benchmark the present results.
more »
« less
On the stability of homogeneous equilibria in the Vlasov–Poisson system on R3
The goal of this article is twofold. First, we investigate the linearized Vlasov–Poisson system around a family of spatially homogeneous equilibria in the unconfined setting. Our analysis follows classical strategies from physics (Binney and Tremaine 2008, Galactic Dynamics,(Princeton University Press); Landau 1946, Acad. Sci. USSR. J. Phys.10,25–34; Penrose 1960,Phys. Fluids,3,258–65) and their subsequent mathematical extensions (Bedrossian et al 2022, SIAM J. Math. Anal.,54,4379–406; Degond 1986,Trans. Am. Math. Soc., 294,435–53; Glassey and Schaeffer 1994,Transp. Theory Stat. Phys.,23, 411–53; Grenier et al 2021, Math. Res. Lett., 28,1679–702; Han-Kwan et al, 2021, Commun. Math. Phys. 387, 1405–40; Mouhot and Villani 2011, Acta Math., 207, 29–201). The main novelties are a unified treatment of a broad class of analytic equilibria and the study of a class of generalized Poisson equilibria. For the former, this provides a detailed description of the associated Green’s functions, including in particular precise dissipation rates (which appear to be new), whereas for the latter we exhibit explicit formulas. Second, we review the main result and ideas in our recent work (Ionescu et al, 2022 on the full global nonlinear asymptotic stability of the Poisson equilibrium in R3
more »
« less
- Award ID(s):
- 2154162
- PAR ID:
- 10504459
- Publisher / Repository:
- IOP
- Date Published:
- Journal Name:
- Classical and Quantum Gravity
- Volume:
- 40
- Issue:
- 18
- ISSN:
- 0264-9381
- Page Range / eLocation ID:
- 185007
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Español, M (Ed.)"This paper generalizes the results obtained by the authors in Dang et al. (SIAM J. Appl. Math. 81(6):2547--2568, 2021) concerning the homogenization of a non-dilute suspension of magnetic particles in a viscous flow. More specifically, in this paper, a restrictive assumption on the coefficients of the coupled equation, made in Dang et al. (SIAM J. Appl. Math. 81(6):2547--2568, 2021), that significantly narrowed the applicability of the homogenization results obtained is relaxed and a new regularity of the solution of the fine-scale problem is proven. In particular, we obtain a global L∞-bound for the gradient of the solution of the scalar equation −divax∕$$\epsilon$$∇$$\phi$$\epsilon$$(x)=f(x){\$$}{\$$}- {\backslash}operatorname {\{}{\{}{\backslash}mathrm {\{}div{\}}{\}}{\}} {\backslash}left [ {\backslash}mathbf {\{}a{\}} {\backslash}left ( x/{\backslash}varepsilon {\backslash}right ){\backslash}nabla {\backslash}varphi ^{\{}{\backslash}varepsilon {\}}(x) {\backslash}right ] = f(x){\$$}{\$$}, uniform with respect to microstructure scale parameter $$\epsilon$${\thinspace}≪{\thinspace}1 in a small interval (0, $$\epsilon$$0), where the coefficient a is only piecewise H{\"o}lder continuous. Thenceforth, this regularity is used in the derivation of the effective response of the given suspension discussed in Dang et al. (SIAM J. Appl. Math. 81(6):2547--2568, 2021)."more » « less
-
We present a comprehensive quantum mechanical study of stereodynamic control of HD + He and D2 + He collisions that have been probed experimentally by Perreault et al. [J. Phys. Chem. Lett. 13, 10912 (2022)] using Stark-induced adiabatic Raman passage (SARP) techniques. Our calculations utilize a highly accurate full-dimensional H2 + He interaction potential with diagonal Born–Oppenheimer correction appropriate for HD and D2 isotopomers. The results show that rotational quenching of HD from j = 2 → j′ = 0 in v = 2, j = 2 → j′ = 1 in v = 2 and v = 4, and j = 4 → j′ = 3 in v = 4 is dominated by an l = 1 shape resonance located between 0.1 and 1.0 cm−1. For collision energies less than 0.1 cm−1, isotropic scattering prevails. An l = 1 resonance centered around 0.02 cm−1 is also found to dominate the j = 2 → j′ = 0 and j = 4 → j′ = 2 transitions in v = 4 for He–D2 collisions consistent with our prior studies of Δj = −2 transition in He + D2(v = 2, j = 2) collisions. Our analysis does not support the hypothesis of Perreault et al. [J. Phys. Chem. Lett. 13, 10912 (2022)] that a strong l = 2 resonance controls the angular distribution for Δj = −2 transition for both systems. Despite improvements in the development of the potential energy surface, a good agreement with SARP experiments for v = 2 is achieved only when contributions from collision energies less than 1.0 cm−1 were excluded in the computation of velocity averaged differential rate coefficients for both systems. This could be due to some uncertainties in the velocity spread in the experiment that employs co-propagation of the collision partners and possibly, the neglect of transverse velocities in the simulation of the experiment.more » « less
-
On a compact complex manifold(M, J)endowed with a holomorphic Poisson tensor \pi_{J}and a de Rham class\alpha\in H^{2}(M, \mathbb{R}), we study the space of generalized Kähler (GK) structures defined by a symplectic formF\in \alphaand whose holomorphic Poisson tensor is\pi_{J}. We define a notion of generalized Kähler class of such structures, and use the moment map framework of Boulanger (2019) and Goto (2020) to extend the Calabi program to GK geometry. We obtain generalizations of the Futaki–Mabuchi extremal vector field (1995) and the Calabi–Lichnerowicz–Matsushima result (1982, 1958, 1957) for the Lie algebra of the group of automorphisms of(M, J, \pi_{J}). We define a closed1-form on a GK class, which yields a generalization of the Mabuchi energy and thus a variational characterization of GK structures of constant scalar curvature. Next we introduce a formal Riemannian metric on a given GK class, generalizing the fundamental construction of Mabuchi–Semmes–Donaldson (1987, 1992, 1997) We show that this metric has nonpositive sectional curvature, and that the Mabuchi energy is convex along geodesics, leading to a conditional uniqueness result for constant scalar curvature GK structures. We finally examine the toric case, proving the uniqueness of extremal generalized Kähler structures and showing that their existence is obstructed by the uniform relative K-stability of the corresponding Delzant polytope. Using the resolution of the Yau–Tian–Donaldson conjecture in the toric case by Chen–Cheng (2021) and He (2019), we show in some settings that this condition suffices for existence and thus construct new examples.more » « less
-
Abstract Fully internal and motional state controlled and individually manipulable polar molecules are desirable for many quantum science applications leveraging the rich state space and intrinsic interactions of molecules. While prior efforts at assembling molecules from their constituent atoms individually trapped in optical tweezers achieved such a goal for exactly one molecule (Zhang J T et al 2020 Phys. Rev. Lett. 124 253401; Cairncross W B et al 2021 Phys. Rev. Lett. 126 123402; He X et al 2020 Science 370 331–5), here we extend the technique to an array of five molecules, unlocking the ability to study molecular interactions. We detail the technical challenges and solutions inherent in scaling this system up. With parallel preparation and control of multiple molecules in hand, this platform now serves as a starting point to harness the vast resources and long-range dipolar interactions of molecules.more » « less
An official website of the United States government

