skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Extracting the electronic structure signal from X-ray and electron scattering in the gas phase
X-ray and electron scattering from free gas-phase molecules is examined using the independent atom model (IAM) andab initioelectronic structure calculations. The IAM describes the effect of the molecular geometry on the scattering, but does not account for the redistribution of valence electrons due to, for instance, chemical bonding. By examining the total,i.e.energy-integrated, scattering from three molecules, fluoroform (CHF3), 1,3-cyclohexadiene (C6H8) and naphthalene (C10H8), the effect of electron redistribution is found to predominantly reside at small-to-medium values of the momentum transfer (q≤ 8 Å−1) in the scattering signal, with a maximum percent difference contribution at 2 ≤q≤ 3 Å−1. A procedure to determine the molecular geometry from the large-qscattering is demonstrated, making it possible to more clearly identify the deviation of the scattering from the IAM approximation at small and intermediateqand to provide a measure of the effect of valence electronic structure on the scattering signal.  more » « less
Award ID(s):
1953839
PAR ID:
10498471
Author(s) / Creator(s):
; ;
Publisher / Repository:
Journal of Synchrotron Radiation
Date Published:
Journal Name:
Journal of Synchrotron Radiation
Volume:
31
Issue:
2
ISSN:
1600-5775
Page Range / eLocation ID:
303 to 311
Subject(s) / Keyword(s):
x-ray scattering electron scattering molecular structures electron density distribution
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Conical intersections between electronic states often dictate the chemistry of photoexcited molecules. Recently developed sources of ultrashort extreme ultraviolet (XUV) pulses tuned to element-specific transitions in molecules allow for the unambiguous detection of electronic state-switching at a conical intersection. Here, the fragmentation of photoexcitediso-propyl iodide andtert-butyl iodide molecules (i-C3H7I andt-C4H9I) through a conical intersection between3Q0/1Q1spin–orbit states is revealed by ultrafast XUV transient absorption measuring iodine 4dcore-to-valence transitions. The electronic state-sensitivity of the technique allows for a complete mapping of molecular dissociation from photoexcitation to photoproducts. In both molecules, the sub-100 fs transfer of a photoexcited wave packet from the3Q0state into the1Q1state at the conical intersection is captured. The results show how differences in the electronic state-switching of the wave packet ini-C3H7I andt-C4H9I directly lead to differences in the photoproduct branching ratio of the two systems. 
    more » « less
  2. The title molecule, C22H6F8, crystallizes in the monoclinic space groupP21/cwith two unique molecules in the asymmetric unit andZ= 8. Each molecule features a short intramolecularsp2-C—H...F hydrogen bond with H...F separations at 2.363 (14) and 2.270 (14) Å, corresponding to 91 and 87.5% of the sum of the van der Waals radii, and C—H...F angles of 158.3 (14) and 166.8 (14)°, respectively. Each molecule also forms an intermolecular bifurcated CH...(F)2interaction with H...F distances ranging from 2.500 (16) to 2.597 (17) Å. 
    more » « less
  3. Abstract Template‐assisted synthesis of well‐defined polynuclear clusters remains a challenge for [M4] square planar topologies. Herein, we present a tetraamine scaffoldRL(NH2)4, where L is a rigidified resorcin[4]arene, to direct the formation ofC4‐symmetricRL(NH)4Cu4clusters with Cu−Cu distances around 2.7 Å, suggesting metal‐metal direct interactions are operative since the sum of copper's van der Waals radii is 2.8 Å. DFT calculations display HOMO to HOMO‐3 residing all within a 0.1 eV gap. These four orbitals display significant electron density contribution from the Cu centers suggesting a delocalized electronic structure. The one‐electron oxidized [Cu4]+species was probed by variable temperature X‐band continuous wave‐electron paramagnetic resonance (CW‐EPR), which displays a multiline spectrum at room temperature. This work presents a novel synthetic strategy for [M4] clusters and a new platform to investigate activation of small molecules. 
    more » « less
  4. Abstract The crystal structures of the charge‐transfer (CT) cocrystals formed by the π‐electron acceptor 1,3,4,5,7,8‐hexafluoro‐11,11,12,12‐tetracyanonaphtho‐2,6‐quinodimethane (F6TNAP) with the planar π‐electron‐donor molecules triphenylene (TP), benzo[b]benzo[4,5]thieno[2,3‐d]thiophene (BTBT), benzo[1,2‐b:4,5‐b′]dithiophene (BDT), pyrene (PY), anthracene (ANT), and carbazole (CBZ) have been determined using single‐crystal X‐ray diffraction (SCXRD), along with those of two polymorphs of F6TNAP. All six cocrystals exhibit 1:1 donor/acceptor stoichiometry and adopt mixed‐stacking motifs. Cocrystals based on BTBT and CBZ π‐electron donor molecules exhibit brickwork packing, while the other four CT cocrystals show herringbone‐type crystal packing. Infrared spectroscopy, molecular geometries determined by SCXRD, and electronic structure calculations indicate that the extent of ground‐state CT in each cocrystal is small. Density functional theory calculations predict large conduction bandwidths and, consequently, low effective masses for electrons for all six CT cocrystals, while the TP‐, BDT‐, and PY‐based cocrystals are also predicted to have large valence bandwidths and low effective masses for holes. Charge‐carrier mobility values are obtained from space‐charge limited current (SCLC) measurements and field‐effect transistor measurements, with values exceeding 1 cm2V−1s1being estimated from SCLC measurements for BTBT:F6TNAP and CBZ:F6TNAP cocrystals. 
    more » « less
  5. Abstract The study of actinide electronic structure and bonding within rigorously controlled environments is fundamental to advancing nuclear applications. Here, we report a new set of isostructural actinide organometallics; An(COTbig)2, (An = Th, U, Np, and Pu), where COTbigis the bulky 1,4-bis(triphenylsilyl)-substituted cyclooctatetraenyl dianion (1,4-(Ph3Si)2C8H6)2-. The actinide(IV) metallocene sandwiches have a clam-shell structure, offering a new molecular symmetry to exploref-orbital contributions in bonding. Combined experimental and computational studies reveal that An(COTbig)2complexes strongly differ from the previously published coplanar An(COT)2sandwiches due to the bent geometry and electron-withdrawing nature of the substituents. While COTbigdisplays comparatively weaker electron donation, the low-energyf-ftransitions in An(COTbig)2have increased molar absorptivity consistent with the removal of the parity selection rule and better energetic matching between ligand and actinide 5forbitals as the series is traversed. For Pu(COTbig)2, covalent mixing of donor 5fmetal orbitals and the ligand-π orbitals is especially strong. 
    more » « less