skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Lithium isotopic constraints on the evolution of continental clay mineral factory and marine oxygenation in the earliest Paleozoic Era
The evolution of oxygen cycles on Earth’s surface has been regulated by the balance between molecular oxygen production and consumption. The Neoproterozoic–Paleozoic transition likely marks the second rise in atmospheric and oceanic oxygen levels, widely attributed to enhanced burial of organic carbon. However, it remains disputed how marine organic carbon production and burial respond to global environmental changes and whether these feedbacks trigger global oxygenation during this interval. Here, we report a large lithium isotopic and elemental dataset from marine mudstones spanning the upper Neoproterozoic to middle Cambrian [~660 million years ago (Ma) to 500 Ma]. These data indicate a dramatic increase in continental clay formation after ~525 Ma, likely linked to secular changes in global climate and compositions of the continental crust. Using a global biogeochemical model, we suggest that intensified continental weathering and clay delivery to the oceans could have notably increased the burial efficiency of organic carbon and facilitated greater oxygen accumulation in the earliest Paleozoic oceans.  more » « less
Award ID(s):
2143164
PAR ID:
10498629
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
American Association for the Advancement of Science
Date Published:
Journal Name:
Science Advances
Volume:
10
Issue:
13
ISSN:
2375-2548
Page Range / eLocation ID:
eadk2152
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The Ediacaran Period (635 to 541 Ma) marks the global transition to a more productive biosphere, evidenced by increased availability of food and oxidants, the appearance of macroscopic animals, significant populations of eukaryotic phytoplankton, and the onset of massive phosphorite deposition. We propose this entire suite of changes results from an increase in the size of the deep-water marine phosphorus reservoir, associated with rising sulfate concentrations and increased remineralization of organic P by sulfate-reducing bacteria. Simple mass balance calculations, constrained by modern anoxic basins, suggest that deep-water phosphate concentrations may have increased by an order of magnitude without any increase in the rate of P input from the continents. Strikingly, despite a major shift in phosphorite deposition, a new compilation of the phosphorus content of Neoproterozoic and early Paleozoic shows little secular change in median values, supporting the view that changes in remineralization and not erosional P fluxes were the principal drivers of observed shifts in phosphorite accumulation. The trigger for these changes may have been transient Neoproterozoic weathering events whose biogeochemical consequences were sustained by a set of positive feedbacks, mediated by the oxygen and sulfur cycles, that led to permanent state change in biogeochemical cycling, primary production, and biological diversity by the end of the Ediacaran Period. 
    more » « less
  2. Abstract. River erosion affects the carbon cycle and thus climate by exporting terrigenous carbon to seafloor sediment and by nourishing CO2-consuming marine life. The Yukon River–Bering Sea system preserves rare source-to-sink records of these processes across profound changes in global climate during the past 5 million years (Ma). Here, we expand the terrestrial erosion record by dating terraces along the Charley River, Alaska, and explore linkages among previously published Yukon Rivertributary incision chronologies and Bering Sea sedimentation. Cosmogenic26Al/10Be isochron burial ages of Charley River terraces match previously documented central Yukon River tributary incision from 2.6 to 1.6 Ma during Pliocene–Pleistocene glacial expansion, and at 1.1 Ma during the 1.2–0.7 Ma Middle Pleistocene climate transition. Bering Sea sediments preserve 2–4-fold rate increases of Yukon River-derived continental detritus, terrestrial and marine organic carbon, and silicate microfossil deposition at 2.6–2.1 and 1.1–0.8 Ma. These tightly coupled records demonstrate elevated terrigenous nutrient and carbon export and concomitant Bering Sea productivity in response to climate-forced Yukon River incision. Carbon burial related to accelerated terrestrial erosion may contribute to CO2 drawdown across the Pliocene–Pleistocene and Middle Pleistocene climate transitions observed in many proxy records worldwide. 
    more » « less
  3. Abstract A geologically rapid Neoproterozoic oxygenation event is commonly linked to the appearance of marine animal groups in the fossil record. However, there is still debate about what evidence from the sedimentary geochemical record—if any—provides strong support for a persistent shift in surface oxygen immediately preceding the rise of animals. We present statistical learning analyses of a large dataset of geochemical data and associated geological context from the Neoproterozoic and Palaeozoic sedimentary record and then use Earth system modelling to link trends in redox-sensitive trace metal and organic carbon concentrations to the oxygenation of Earth’s oceans and atmosphere. We do not find evidence for the wholesale oxygenation of Earth’s oceans in the late Neoproterozoic era. We do, however, reconstruct a moderate long-term increase in atmospheric oxygen and marine productivity. These changes to the Earth system would have increased dissolved oxygen and food supply in shallow-water habitats during the broad interval of geologic time in which the major animal groups first radiated. This approach provides some of the most direct evidence for potential physiological drivers of the Cambrian radiation, while highlighting the importance of later Palaeozoic oxygenation in the evolution of the modern Earth system. 
    more » « less
  4. Jacobson, A. (Ed.)
    Ocean anoxic events (OAE) are characterized by increased organic content of marine sediment on a global scale with accompanying positive excursions in sedimentary organic and inorganic d 13C values. To sustain the increased C exports and burial required to explain the C isotope excursion, increased supplies of nutrients to the oceans are often invoked during ocean anoxic events. The potential source of nutrients in these events is investigated in this study for Oceanic Anoxic Event 2, which spans the Cenomanian-Turonian boundary. Massive eruptions of one or more Large Igneous Provinces (LIPs) are the proposed trigger for OAE 2. The global warming associated with volcanogenic loading of carbon dioxide to the atmosphere has been associated with increased continental weathering rates during OAE 2, and by extension, enhanced nutrient supplies to the oceans. Seawater interactions with hot basalts at LIP eruption sites can further deliver ferrous iron and other reduced metals to seawater that can stimulate increased productivity in surface waters and increased oxygen demand in deep waters. The relative importance of continental and submarine weathering drivers of expanding ocean anoxia during OAE 2 are difficult to disentangle. In this paper, a box model of the marine Sr cycle is used to constrain the timing and relative magnitudes of changes in the continental weathering and hydrothermal Sr fluxes to the oceans during OAE 2 using a new high-resolution record of seawater 87Sr/86Sr ratios preserved in a marl-limestone succession from the Iona-1 core collected from the Eagle Ford Formation in Texas. The results show that seawater 87Sr/86Sr ratios change synchronously with Os isotope evidence for the onset of massive LIP volcanism 60 kyr before the positive C isotope excursion that traditionally marks the onset of OAE 2. The higher temporal resolution of the seawater Sr isotope record presented in this study warrants a detailed quantitative analysis of the changes in continental weathering and hydrothermal Sr inputs to the oceans during OAE 2. Using an ocean Sr box model, it is found that increasing the continental weathering Sr flux by 1.8-times captures the change in seawater 87Sr/86Sr recorded in the Iona-1 core. The increase in the continental weathering flux is smaller than the threefold increase estimated by studies of seawater Ca isotope changes during OAE 2, suggesting that hydrothermal forcing may have played a larger role in the development of ocean anoxic events than previously considered. 
    more » « less
  5. Jacobson, A. (Ed.)
    Ocean anoxic events (OAE) are characterized by increased organic content of marine sediment on a global scale with accompanying positive excursions in sedimentary organic and inorganic d 13C values. To sustain the increased C exports and burial required to explain the C isotope excursion, increased supplies of nutrients to the oceans are often invoked during ocean anoxic events. The potential source of nutrients in these events is investigated in this study for Oceanic Anoxic Event 2, which spans the Cenomanian-Turonian boundary. Massive eruptions of one or more Large Igneous Provinces (LIPs) are the proposed trigger for OAE 2. The global warming associated with volcanogenic loading of carbon dioxide to the atmosphere has been associated with increased continental weathering rates during OAE 2, and by extension, enhanced nutrient supplies to the oceans. Seawater interactions with hot basalts at LIP eruption sites can further deliver ferrous iron and other reduced metals to seawater that can stimulate increased productivity in surface waters and increased oxygen demand in deep waters. The relative importance of continental and submarine weathering drivers of expanding ocean anoxia during OAE 2 are difficult to disentangle. In this paper, a box model of the marine Sr cycle is used to constrain the timing and relative magnitudes of changes in the continental weathering and hydrothermal Sr fluxes to the oceans during OAE 2 using a new high-resolution record of seawater 87Sr/86Sr ratios preserved in a marl-limestone succession from the Iona-1 core collected from the Eagle Ford Formation in Texas. The results show that seawater 87Sr/86Sr ratios change synchronously with Os isotope evidence for the onset of massive LIP volcanism 60 kyr before the positive C isotope excursion that traditionally marks the onset of OAE 2. The higher temporal resolution of the seawater Sr isotope record presented in this study warrants a detailed quantitative analysis of the changes in continental weathering and hydrothermal Sr inputs to the oceans during OAE 2. Using an ocean Sr box model, it is found that increasing the continental weathering Sr flux by  1.8-times captures the change in seawater 87Sr/86Sr recorded in the Iona-1 core. The increase in the continental weathering flux is smaller than the threefold increase estimated by studies of seawater Ca isotope changes during OAE 2, suggesting that hydrothermal forcing may have played a larger role in the development of ocean anoxic events than previously considered. 
    more » « less