skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: GiGaMAE: Generalizable Graph Masked Autoencoder via Collaborative Latent Space Reconstruction
Self-supervised learning with masked autoencoders has recently gained popularity for its ability to produce effective image or textual representations, which can be applied to various downstream tasks without retraining. However, we observe that the current masked autoencoder models lack good generalization ability on graph data. To tackle this issue, we propose a novel graph masked autoencoder framework called GiGaMAE. Different from existing masked autoencoders that learn node presentations by explicitly reconstructing the original graph components (e.g., features or edges), in this paper, we propose to collaboratively reconstruct informative and integrated latent embeddings. By considering embeddings encompassing graph topology and attribute information as reconstruction targets, our model could capture more generalized and comprehensive knowledge. Furthermore, we introduce a mutual information based reconstruction loss that enables the effective reconstruction of multiple targets. This learning objective allows us to differentiate between the exclusive knowledge learned from a single target and common knowledge shared by multiple targets. We evaluate our method on three downstream tasks with seven datasets as benchmarks. Extensive experiments demonstrate the superiority of GiGaMAE against state-of-the-art baselines. We hope our results will shed light on the design of foundation models on graph-structured data. Our code is available at: https://github.com/sycny/GiGaMAE.  more » « less
Award ID(s):
2223769 2223768
PAR ID:
10498646
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
Proceedings of the 32nd ACM International Conference on Information and Knowledge Management
ISBN:
9798400701245
Page Range / eLocation ID:
2259 to 2269
Format(s):
Medium: X
Location:
Birmingham United Kingdom
Sponsoring Org:
National Science Foundation
More Like this
  1. Self-supervised training methods for transformers have demonstrated remarkable performance across various domains. Previous transformer-based models, such as masked autoencoders (MAE), typically utilize a single normalization layer for both the class token [CLS] and the tokens. We propose in this paper a new yet simple normalization method that separately normalizes embedding vectors respectively corresponding to normal tokens and the [CLS] token, in order to better capture their distinct characteristics and enhance downstream task performance. Our empirical study shows that the [CLS] embeddings learned with our separate normalization layer better encode the global contextual information and are distributed more uniformly in its anisotropic space. When the conventional normalization layer is replaced with a separate normalization layer, we observe an average 2.7% performance improvement in learning tasks from the image, natural language, and graph domains. 
    more » « less
  2. Graph embedding techniques are pivotal in real-world machine learning tasks that operate on graph-structured data, such as social recommendation and protein structure modeling. Embeddings are mostly performed on the node level for learning representations of each node. Since the formation of a graph is inevitably affected by certain sensitive node attributes, the node embeddings can inherit such sensitive information and introduce undesirable biases in downstream tasks. Most existing works impose ad-hoc constraints on the node embeddings to restrict their distributions for unbiasedness/fairness, which however compromise the utility of the resulting embeddings. In this paper, we propose a principled new way for unbiased graph embedding by learning node embeddings from an underlying bias-free graph, which is not influenced by sensitive node attributes. Motivated by this new perspective, we propose two complementary methods for uncovering such an underlying graph, with the goal of introducing minimum impact on the utility of the embeddings. Both our theoretical justification and extensive experimental comparisons against state-of-the-art solutions demonstrate the effectiveness of our proposed methods. 
    more » « less
  3. Knowledge graph embedding (KGE) is a technique for learning continuous embeddings for entities and relations in the knowledge graph. Due to its benefit to a variety of downstream tasks such as knowledge graph completion, question answering and recommendation, KGE has gained significant attention recently. Despite its effectiveness in a benign environment, KGE's robustness to adversarial attacks is not well-studied. Existing attack methods on graph data cannot be directly applied to attack the embeddings of knowledge graph due to its heterogeneity. To fill this gap, we propose a collection of data poisoning attack strategies, which can effectively manipulate the plausibility of arbitrary targeted facts in a knowledge graph by adding or deleting facts on the graph. The effectiveness and efficiency of the proposed attack strategies are verified by extensive evaluations on two widely-used benchmarks. 
    more » « less
  4. Pretraining a language model (LM) on text has been shown to help various downstream NLP tasks. Recent works show that a knowledge graph (KG) can complement text data, offering structured background knowledge that provides a useful scaffold for reasoning. However, these works are not pretrained to learn a deep fusion of the two modalities at scale, limiting the potential to acquire fully joint representations of text and KG. Here we propose DRAGON (Deep Bidirectional Language-Knowledge Graph Pretraining), a self-supervised approach to pretraining a deeply joint language-knowledge foundation model from text and KG at scale. Specifically, our model takes pairs of text segments and relevant KG subgraphs as input and bidirectionally fuses information from both modalities. We pretrain this model by unifying two self-supervised reasoning tasks, masked language modeling and KG link prediction. DRAGON outperforms existing LM and LM+KG models on diverse downstream tasks including question answering across general and biomedical domains, with +5% absolute gain on average. In particular, DRAGON achieves notable performance on complex reasoning about language and knowledge (+10% on questions involving long contexts or multi-step reasoning) and low-resource QA (+8% on OBQA and RiddleSense), and new state-of-the-art results on various BioNLP tasks. Our code and trained models are available at https://github.com/michiyasunaga/dragon. 
    more » « less
  5. Pre-training powerful Graph Neural Networks (GNNs) with unlabeled graph data in a self-supervised manner has emerged as a prominent technique in recent years. However, inevitable objective gaps often exist between pre-training and downstream tasks. To bridge this gap, graph prompt tuning techniques design and learn graph prompts by manipulating input graphs or reframing downstream tasks as pre-training tasks without fine-tuning the pre-trained GNN models. While recent graph prompt tuning methods have proven effective in adapting pre-trained GNN models for downstream tasks, they overlook the crucial role of edges in graph prompt design, which can significantly affect the quality of graph representations for downstream tasks. In this study, we propose EdgePrompt, a simple yet effective graph prompt tuning method from the perspective of edges. Unlike previous studies that design prompt vectors on node features, EdgePrompt manipulates input graphs by learning additional prompt vectors for edges and incorporates the edge prompts through message passing in the pre-trained GNN models to better embed graph structural information for downstream tasks. Our method is compatible with prevalent GNN architectures pre-trained under various pre-training strategies and is universal for different downstream tasks. We provide comprehensive theoretical analyses of our method regarding its capability of handling node classification and graph classification as downstream tasks. Extensive experiments on ten graph datasets under four pre-training strategies demonstrate the superiority of our proposed method against six baselines. 
    more » « less