Subcritical crack growth can occur under a constant applied load below the threshold value for catastrophic failure, also known as static fatigue. Here, we report how a crack grows under a combination of stress-intensity factor (K) and temperature in a model brittle glass using molecular dynamics simulations. The model glass is under dry conditions, thus avoiding the complexity of corrosion chemistry. The crack growth rate is shown to be inconsistent with the commonly used subcritical crack growth model rooted in the transition state theory (TST), in which the applied stress-intensity factor reduces the transition barrier. A new subcritical crack growth model is proposed with a constant barrier and a K-dependent prefactor in TST, representing the size of the region for potential bond breaking. The thermomechanical condition for subcritical crack growth is also mapped in the K-T domain, in between elastic deformation and catastrophic fracture regimes. Finally, we show substantial crack self-healing once the applied load is removed, under the thermodynamic driving force of surface energy reduction. Our findings provide new insights into the mechanochemical coupling during static fatigue and call for experimental investigation of whether the activation energy is K-dependent.
more »
« less
Delayed fracture caused by time-dependent damage in PDMS
An experimental and theoretical study of delayed fracture of polydimethlsiloxane (PDMS) is presented. Previous works have demonstrated that delayed fracture in single edge notch specimens is caused by time dependent damage due to chain scission. Here we study the interactions between damage and the elastic field using different specimens and crack geometries with blunt and sharp cracks. Our experiments show that initial toughness is not well defined, as stable slow crack growth can occur over a range of applied loads. Our experiments demonstrate that there is a universal relation between crack growth rate and applied energy release rate. A model coupling the nonlinear elastic deformation and rate dependent bond scission is proposed and is in good agreement with experimental data.
more »
« less
- Award ID(s):
- 1903308
- PAR ID:
- 10498675
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Journal of the Mechanics and Physics of Solids
- Volume:
- 181
- Issue:
- C
- ISSN:
- 0022-5096
- Page Range / eLocation ID:
- 105459
- Subject(s) / Keyword(s):
- delayed fracture Crack growth Catastrophic failure PDMS Time-dependent damage
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT Strongly anisotropic geomaterials, such as layered shales, have been observed to undergo fracture under compressive loading. This paper applies a phase‐field fracture model to study this fracture process. While phase‐field fracture models have several advantages—primarily that the fracture path is not predetermined but arises naturally from the evolution of a smooth non‐singular damage field—they provide unphysical predictions when the stress state is complex and includes compression that can cause crack faces to contact. Building on a recently developed phase‐field model that accounts for compressive traction across the crack face, this paper extends the model to the setting of anisotropic fracture. The key features of the model include the following: (1) a homogenized anisotropic elastic response and strongly anisotropic model for the work to fracture; (2) an effective damage response that accounts consistently for compressive traction across the crack face, that is derived from the anisotropic elastic response; (3) a regularized crack normal field that overcomes the shortcomings of the isotropic setting, and enables the correct crack response, both across and transverse to the crack face. To test the model, we first compare the predictions to phase‐field fracture evolution calculations in a fully resolved layered specimen with spatial inhomogeneity, and show that it captures the overall patterns of crack growth. We then apply the model to previously reported experimental observations of fracture evolution in laboratory specimens of shales under compression with confinement, and find that it predicts well the observed crack patterns in a broad range of loading conditions. We further apply the model to predict the growth of wing cracks under compression and confinement. Prior approaches to simulate wing cracks have treated the initial cracks as an external boundary, which makes them difficult to apply to general settings. Here, the effective crack response model enables us to treat the initial crack simply as a nonsingular damaged zone within the computational domain, thereby allowing for easy and general computations.more » « less
-
null (Ed.)Fracturing in brittle rocks with an existing crack results in the development of a significant nonlinear region surrounding the crack tip called the fracture process zone. Various experimental and numerical studies have shown that the crack tip parameters such as the crack tip opening displacement (CTOD) and the fracture energy are critically important in characterizing the fracture process zone. In this study, numerical simulations of rock specimens with a center notch subjected to three-point bending were conducted using the extended finite element method (XFEM) along with the cohesive zone model (CZM) to account for fracture process zone. The input parameters of CZM such as the elastic and critical crack opening displacements were first estimated based on the results of three-point bending tests on the center notched Barre granite specimens. Displacements were measured using the two dimensional digital image correlation technique and used to characterize the evolution of the fracture process zone and estimate the parameters of the cohesive zone model. The results from the numerical simulations showed that CZM provided a good agreement with experimental data as it predicted all three stages of cracking from fracture process initiation to macro-crack growth.more » « less
-
ABSTRACT:Due to rock mass being commonly subjected to compressive or shear loading, the mode II fracture toughness is an important material parameter for rocks. Fracturing in rocks is governed by the behavior of a nonlinear region surrounding the crack tip called the fracture process zone (FPZ). However, the characteristics of mode II fracture are still determined based on the linear elastic fracture mechanics (LEFM), which assumes that a pure mode II loading results in a pure mode II fracture. In this study, the FPZ development in Barre granite specimens under mode II loading was investigated using the short beam compression (SBC) test. Additionally, the influence of lateral confinement on various characteristics of mode II fracture was studied. The experimental setup included the simultaneous monitoring of surface deformation using the two-dimensional digital image correlation technique (2D-DIC) to identify fracture mode and characterize the FPZ evolution in Barre granite specimens. The 2D-DIC analysis showed a dominant mixed-mode I/II fracture in the ligament between two notches, irrespective of confinement level on the SBC specimens. The influence of confinement on the SBC specimens was assessed by analyzing the evolution of crack displacement and changes in value of mode II fracture toughness. Larger levels of damage in confined specimens were observed prior to the failure than the unconfined specimens, indicating an increase in the fracture resistance and therefore mode II fracture toughness with the confining stress. 1. INTRODUCTIONThe fracturing in laboratory-scale rock specimens is often characterized by the deformation of the inelastic region surrounding the crack tips, also known as the fracture process zone (FPZ) (Backers et al., 2005; Ghamgosar and Erarslan, 2016). While the influence of the FPZ on mode I fracture in rocks has been extensively investigated, there are limited studies on FPZ development in rocks under pure mode II loading (Ji et al., 2016; Lin et al., 2020; Garg et al., 2021; Li et al., 2021).more » « less
-
Quasi-brittle fracture mechanics is used to evaluate fracture of human cortical bone in aging. The approach is demonstrated using cortical bone bars extracted from one 92-year-old human male cadaver. In-situ fracture mechanics experiments in a 3D X-ray microscope are conducted. The evolution of the fracture process zone is documented. Fully developed fracture process zone lengths at peak load are found to span about three osteon diameters. Crack deflection and arrest at cement lines is a key process to build extrinsic toughness. Strength and toughness are found as size-dependent, not only for laboratory-scale experimental specimens but also for the whole femur. A scaling law for the length fracture process zone is used. Then, size-independent, tissue fracture properties are calculated. Linear elastic fracture mechanics applied to laboratory beam specimens underestimates the tissue toughness by 60%. Tissue fracture properties are used to predict the load capacity of the femur in bending within the range of documented data. The quasi-brittle fracture mechanics approach allows for the assessment of the combined effect of bone quantity and bone quality on fracture risk. However, further work is needed considering a larger range of subjects and in the model validation at the organ length scale.more » « less
An official website of the United States government

