skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Seawater Intrusion at the Grounding Line of Jakobshavn Isbræ, Greenland, From Terrestrial Radar Interferometry
Abstract Jakobshavn Isbræ, a major outlet glacier in Greenland, lost its protective ice shelf in 2002 and has been speeding up and retreating since. We image its grounding line for the first time with a terrestrial radar interferometer deployed in 2016 and detect its migration at tidal frequencies. The southern half of the glacier develops a floating section (3 km × 3 km) that migrates in phase with the tidal difference, up to a distance of 2.8 km, far more than previously expected. We attribute the migration to kilometer‐scale seawater intrusions, 10–20 cm in height, with the tide. The intrusions reveal that the glacier bed may be up to 800 m deeper than expected on the south side, which illustrates that our knowledge of bed topography remains limited for this glacier. We expect seawater intrusions to cause rapid melt of basal ice and play a major role in the glacier evolution.  more » « less
Award ID(s):
2151295
PAR ID:
10498693
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
AGU
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
51
Issue:
6
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Malaspina Glacier, located on the coast of southern Alaska, is the world's largest piedmont glacier. A narrow ice‐cored foreland zone undergoing rapid thermokarst erosion separates the glacier from the relatively warm waters of the Gulf of Alaska. Glacier‐wide thinning rates for Malaspina are greater than 1 m/yr, and previous geophysical investigations indicated that bed elevation exceeds 300 m below sea level in some places. These observations together give rise to the question of glacial stability. To address this question, glacier evolution models are dependent upon detailed observations of Malaspina's subglacial topography. Here, we map 2,000 line‐km of the glacier's bed using airborne radar sounding data collected by NASA's Operation IceBridge. When compared to gridded radar measurements, we find that glaciological models overestimate Malaspina's volume by more than 30%. While we report a mean bed elevation 100 m greater than previous models, we find that Malaspina inhabits a broad basin largely grounded below sea level. Several subglacial channels dissect the glacier's bed: the most prominent of these channels extends at least 35 km up‐glacier from the terminus toward the throat of Seward Glacier. Provided continued foreland erosion, an ice‐ocean connection may promote rapid retreat along these overdeepened subglacial channels, with a global sea‐level rise potential of 1.4 mm. 
    more » « less
  2. Abstract Glacier sliding has major environmental consequences, but friction caused by debris in the basal ice of glaciers is seldom considered in sliding models. To include such friction, divergent hypotheses for clast‐bed contact forces require testing. In experiments we rotate an ice ring (outside diameter = 0.9 m), with and without isolated till clasts, over a smooth rock bed. Ice is kept at its pressure‐melting temperature, and meltwater drains along a film at the bed to atmospheric pressure at its edges. The ice pressure or bed‐normal component of ice velocity is controlled, while bed shear stress is measured. Results with debris‐free ice indicate friction coefficients < 0.01. Shear stresses caused by clasts in ice are independent of ice pressure. This independence indicates that with increases in ice pressure the water pressure in cavities observed beneath clasts increases commensurately to allow drainage of cavities into the melt film, leaving clast‐bed contact forces unaffected. Shear stresses, instead, are proportional to bed‐normal ice velocity. Cavities and the absence of regelation ice indicate that, unlike model formulations, regelation past clasts does not control contact forces. Alternatively, heat from the bed melts ice above clasts, creating pressure gradients in adjacent meltwater films that cause contact forces to depend on bed‐normal ice velocity. This model can account for observations if rock friction predicated on Hertzian clast‐bed contacts is assumed. Including debris‐bed friction in glacier sliding models will require coupling the ice velocity field near the bed to contact forces rather than imposing a pressure‐based friction rule. 
    more » « less
  3. Abstract Understanding the recent history of Thwaites Glacier, and the processes controlling its ongoing retreat, is key to projecting Antarctic contributions to future sea-level rise. Of particular concern is how the glacier grounding zone might evolve over coming decades where it is stabilized by sea-floor bathymetric highs. Here we use geophysical data from an autonomous underwater vehicle deployed at the Thwaites Glacier ice front, to document the ocean-floor imprint of past retreat from a sea-bed promontory. We show patterns of back-stepping sedimentary ridges formed daily by a mechanism of tidal lifting and settling at the grounding line at a time when Thwaites Glacier was more advanced than it is today. Over a duration of 5.5 months, Thwaites grounding zone retreated at a rate of >2.1 km per year—twice the rate observed by satellite at the fastest retreating part of the grounding zone between 2011 and 2019. Our results suggest that sustained pulses of rapid retreat have occurred at Thwaites Glacier in the past two centuries. Similar rapid retreat pulses are likely to occur in the near future when the grounding zone migrates back off stabilizing high points on the sea floor. 
    more » « less
  4. Abstract. Antarctic ice shelves buttress the flow of the ice sheet but are vulnerable to increased basal melting from contact with a warming ocean and increased mass loss from calving due to changing flow patterns. Channels and similar features at the bases of ice shelves have been linked to enhanced basal melting and observed to intersect the grounding zone, where the greatest melt rates are often observed. The ice shelf of Thwaites Glacier is especially vulnerable to basal melt and grounding zone retreat because the glacier has a retrograde bed leading to a deep trough below the grounded ice sheet. We use digital surface models from 2010–2022 to investigate the evolution of its ice-shelf channels, grounding zone position, and the interactions between them. We find that the highest sustained rates of grounding zone retreat (up to 0.7 km yr−1) are associated with high basal melt rates (up to ∼250 m yr−1) and are found where ice-shelf channels intersect the grounding zone, especially atop steep local retrograde slopes where subglacial channel discharge is expected. We find no areas with sustained grounding zone advance, although some secular retreat was distal from ice-shelf channels. Pinpointing other locations with similar risk factors could focus assessments of vulnerability to grounding zone retreat. 
    more » « less
  5. Abstract Recent acceleration and thinning of Thwaites Glacier, West Antarctica, motivates investigation of the controls upon, and stability of, its present ice-flow pattern. Its eastern shear margin separates Thwaites Glacier from slower-flowing ice and the southern tributaries of Pine Island Glacier. Troughs in Thwaites Glacier’s bed topography bound nearly all of its tributaries, except along this eastern shear margin, which has no clear relationship with regional bed topography along most of its length. Here we use airborne ice-penetrating radar data from the Airborne Geophysical Survey of the Amundsen Sea Embayment, Antarctica (AGASEA) to investigate the nature of the bed across this margin. Radar data reveal slightly higher and rougher bed topography on the slower-flowing side of the margin, along with lower bed reflectivity. However, the change in bed reflectivity across the margin is partially explained by a change in bed roughness. From these observations, we infer that the position of the eastern shear margin is not strongly controlled by local bed topography or other bed properties. Given the potential for future increases in ice flux farther downstream, the eastern shear margin may be vulnerable to migration. However, there is no evidence that this margin is migrating presently, despite ongoing changes farther downstream. 
    more » « less