skip to main content


Title: Rapid retreat of Thwaites Glacier in the pre-satellite era
Abstract

Understanding the recent history of Thwaites Glacier, and the processes controlling its ongoing retreat, is key to projecting Antarctic contributions to future sea-level rise. Of particular concern is how the glacier grounding zone might evolve over coming decades where it is stabilized by sea-floor bathymetric highs. Here we use geophysical data from an autonomous underwater vehicle deployed at the Thwaites Glacier ice front, to document the ocean-floor imprint of past retreat from a sea-bed promontory. We show patterns of back-stepping sedimentary ridges formed daily by a mechanism of tidal lifting and settling at the grounding line at a time when Thwaites Glacier was more advanced than it is today. Over a duration of 5.5 months, Thwaites grounding zone retreated at a rate of >2.1 km per year—twice the rate observed by satellite at the fastest retreating part of the grounding zone between 2011 and 2019. Our results suggest that sustained pulses of rapid retreat have occurred at Thwaites Glacier in the past two centuries. Similar rapid retreat pulses are likely to occur in the near future when the grounding zone migrates back off stabilizing high points on the sea floor.

 
more » « less
Award ID(s):
1929991 1738942
NSF-PAR ID:
10373167
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Geoscience
Volume:
15
Issue:
9
ISSN:
1752-0894
Page Range / eLocation ID:
p. 706-713
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract. The geometry of the sea floor immediately beyondAntarctica's marine-terminating glaciers is a fundamental control onwarm-water routing, but it also describes former topographic pinning pointsthat have been important for ice-shelf buttressing. Unfortunately, thisinformation is often lacking due to the inaccessibility of these areas forsurvey, leading to modelled or interpolated bathymetries being used asboundary conditions in numerical modelling simulations. At Thwaites Glacier(TG) this critical data gap was addressed in 2019 during the first cruise ofthe International Thwaites Glacier Collaboration (ITGC) project. We present more than 2000 km2 of new multibeamecho-sounder (MBES) data acquired in exceptional sea-ice conditionsimmediately offshore TG, and we update existing bathymetric compilations.The cross-sectional areas of sea-floor troughs are under-predicted by up to40 % or are not resolved at all where MBES data are missing, suggesting thatcalculations of trough capacity, and thus oceanic heat flux, may besignificantly underestimated. Spatial variations in the morphology oftopographic highs, known to be former pinning points for the floating iceshelf of TG, indicate differences in bed composition that are supported bylandform evidence. We discuss links to ice dynamics for an overriding icemass including a potential positive feedback mechanism where erosion ofsoft erodible highs may lead to ice-shelf ungrounding even with littleor no ice thinning. Analyses of bed roughnesses and basal drag contributionsshow that the sea-floor bathymetry in front of TG is an analogue for extantbed areas. Ice flow over the sea-floor troughs and ridges would have beenaffected by similarly high basal drag to that acting at the grounding zonetoday. We conclude that more can certainly be gleaned from these 3Dbathymetric datasets regarding the likely spatial variability of bedroughness and bed composition types underneath TG. This work also addressesthe requirements of recent numerical ice-sheet and ocean modelling studiesthat have recognised the need for accurate and high-resolution bathymetry todetermine warm-water routing to the grounding zone and, ultimately, forpredicting glacier retreat behaviour. 
    more » « less
  2. Abstract

    Thwaites Glacier (TG) plays an important role in future sea-level rise (SLR) contribution from the West Antarctic Ice Sheet. Recent observations show that TG is losing mass, and its grounding zone is retreating. Previous modeling has produced a wide range of results concerning whether, when, and how rapidly further retreat will occur under continued warming. These differences arise at least in part from ill-constrained processes, including friction from the bed, and future atmosphere and ocean forcing affecting ice-shelf and grounding-zone buttressing. Here, we apply the Ice Sheet and Sea-level System Model (ISSM) with a range of specifications of basal sliding behavior in response to varying ocean forcing. We find that basin-wide bed character strongly affects TG's response to sub-shelf melt by modulating how changes in driving stress are balanced by the bed as the glacier responds to external forcing. Resulting differences in dynamic thinning patterns alter modeled grounding-line retreat across Thwaites' catchment, affecting both modeled rates and magnitudes of SLR contribution from this critical sector of the ice sheet. Bed character introduces large uncertainties in projections of TG under equal external forcing, pointing to this as a crucial constraint needed in predictive models of West Antarctica.

     
    more » « less
  3. Abstract Thwaites Glacier is one of the fastest-changing ice–ocean systems in Antarctica 1–3 . Much of the ice sheet within the catchment of Thwaites Glacier is grounded below sea level on bedrock that deepens inland 4 , making it susceptible to rapid and irreversible ice loss that could raise the global sea level by more than half a metre 2,3,5 . The rate and extent of ice loss, and whether it proceeds irreversibly, are set by the ocean conditions and basal melting within the grounding-zone region where Thwaites Glacier first goes afloat 3,6 , both of which are largely unknown. Here we show—using observations from a hot-water-drilled access hole—that the grounding zone of Thwaites Eastern Ice Shelf (TEIS) is characterized by a warm and highly stable water column with temperatures substantially higher than the in situ freezing point. Despite these warm conditions, low current speeds and strong density stratification in the ice–ocean boundary layer actively restrict the vertical mixing of heat towards the ice base 7,8 , resulting in strongly suppressed basal melting. Our results demonstrate that the canonical model of ice-shelf basal melting used to generate sea-level projections cannot reproduce observed melt rates beneath this critically important glacier, and that rapid and possibly unstable grounding-line retreat may be associated with relatively modest basal melt rates. 
    more » « less
  4. Abstract

    Glacier-bed characteristics that are poorly known and modeled are important in projected sea-level rise from ice-sheet changes under strong warming, especially in the Thwaites Glacier drainage of West Antarctica. Ocean warming may induce ice-shelf thinning or loss, or thinning of ice in estuarine zones, reducing backstress on grounded ice. Models indicate that, in response, more-nearly-plastic beds favor faster ice loss by causing larger flow acceleration, but more-nearly-viscous beds favor localized near-coastal thinning that could speed grounding-zone retreat into interior basins where marine-ice-sheet instability or cliff instability could develop and cause very rapid ice loss. Interpretation of available data indicates that the bed is spatially mosaicked, with both viscous and plastic regions. Flow against bedrock topography removes plastic lubricating tills, exposing bedrock that is eroded on up-glacier sides of obstacles to form moats with exposed bedrock tails extending downglacier adjacent to lee-side soft-till bedforms. Flow against topography also generates high-ice-pressure zones that prevent inflow of lubricating water over distances that scale with the obstacle size. Extending existing observations to sufficiently large regions, and developing models assimilating such data at the appropriate scale, present large, important research challenges that must be met to reliably project future forced sea-level rise.

     
    more » « less
  5. Abstract. Chronologies of glacier deposits in the Transantarctic Mountains provide important constraints on grounding-line retreat during the last deglaciation in the Ross Sea. However, between Beardmore Glacier and Ross Island – a distance of some 600 km – the existing chronologies are generally sparse and far from the modern grounding line, leaving the past dynamics of this vast region largely unconstrained. We present exposure ages of glacial deposits at three locations alongside the Darwin–Hatherton Glacier System – including within 10 km of the modern grounding line – that record several hundred meters of Late Pleistocene to Early Holocene thickening relative to present. As the ice sheet grounding line in the Ross Sea retreated, Hatherton Glacier thinned steadily from about 9 until about 3 ka. Our data are equivocal about the maximum thickness and Mid-Holocene to Early Holocene history at the mouth of Darwin Glacier, allowing for two conflicting deglaciation scenarios: (1) ∼500 m of thinning from 9 to 3 ka, similar to Hatherton Glacier, or (2) ∼950 m of thinning, with a rapid pulse of ∼600 m thinning at around 5 ka. We test these two scenarios using a 1.5-dimensional flowband model, forced by ice thickness changes at the mouth of Darwin Glacier and evaluated by fit to the chronology of deposits at Hatherton Glacier. The constraints from Hatherton Glacier are consistent with the interpretation that the mouth of Darwin Glacier thinned steadily by ∼500 m from 9 to 3 ka. Rapid pulses of thinning at the mouth of Darwin Glacier are ruled out by the data at Hatherton Glacier. This contrasts with some of the available records from the mouths of other outlet glaciers in the Transantarctic Mountains, many of which thinned by hundreds of meters over roughly a 1000-year period in the Early Holocene. The deglaciation histories of Darwin and Hatherton glaciers are best matched by a steady decrease in catchment area through the Holocene, suggesting that Byrd and/or Mulock glaciers may have captured roughly half of the catchment area of Darwin and Hatherton glaciers during the last deglaciation. An ensemble of three-dimensional ice sheet model simulations suggest that Darwin and Hatherton glaciers are strongly buttressed by convergent flow with ice from neighboring Byrd and Mulock glaciers, and by lateral drag past Minna Bluff, which could have led to a pattern of retreat distinct from other glaciers throughout the Transantarctic Mountains. 
    more » « less