skip to main content

This content will become publicly available on January 16, 2025

Title: Tidally Modulated Glacial Slip and Tremor at Helheim Glacier, Greenland

Numerical modeling of ice sheet motion and hence projections of global sea level rise require information about the evolving subglacial environment, which unfortunately remains largely unknown due to its difficulty of access. Here we advance such subglacial observations by reporting multi‐year observations of seismic tremor likely associated with glacier sliding at Helheim Glacier. This association is confirmed by correlation analysis between tremor power and multiple environmental forcings on different timescales. Variations of the observed tremor power indicate that different factors affect glacial sliding on different timescales. Effective pressure may control glacial sliding on long (seasonal/annual) timescales, while tidal forcing modulates the sliding rate and tremor power on short (hourly/daily) timescales. Polarization results suggest that the tremor source comes from an upstream subglacial ridge. This observation provides insights on how different factors should be included in ice sheet modeling and how their timescales of variability play an essential role.

more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Date Published:
Journal Name:
Geophysical Research Letters
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Understanding the dynamic response of glaciers to climate change is vital for assessing water resources and hazards, and subglacial hydrology is a key player in glacier systems. Traditional observations of subglacial hydrology are spatially and temporally limited, but recent seismic deployments on and around glaciers show the potential for comprehensive observation of glacial hydrologic systems. We present results from a high‐density seismic deployment spanning the surface of Lemon Creek Glacier, Alaska. Our study coincided with a marginal lake drainage event, which served as a natural experiment for seismic detection of changes in subglacial hydrology. We observed glaciohydraulic tremor across the surface of the glacier that was generated by the subglacial hydrologic system. During the lake drainage, the relative changes in seismic tremor power and water flux are consistent with pressurization of the subglacial system of only the upper part of the glacier. This event was not accompanied by a significant increase in glacier velocity; either some threshold necessary for rapid basal motion was not attained, or, plausibly, the geometry of Lemon Creek Glacier inhibited speedup. This pressurization event would have likely gone undetected without seismic observations, demonstrating the power of cryoseismology in testing assumptions about and mapping the spatial extent of subglacial pressurization.

    more » « less
  2. Abstract

    Links between hydrology and sliding of the Greenland Ice Sheet (GrIS) are poorly understood. Here, we monitored meltwater's propagation through the glacial hydrologic system for catchments at different elevations by quantifying the lag cascade as daily meltwater pulses traveled through the supraglacial, englacial, and subglacial drainage systems. We found that meltwater's residence time within supraglacial catchments—depending upon area, snow cover, and degree of channelization—controls the timing of peak moulin head, resulting in the 2 hr later peak observed at higher elevations. Unlike at lower elevations where peak moulin head and peak sliding coincided, at higher elevations peak sliding lagged peak moulin head by ∼2.8 hr. This delay was likely caused by the area's lower moulin density, which required diurnal pressure oscillations to migrate further into the distributed drainage system to elicit the observed velocity response. These observations highlight the supraglacial drainage system's control on coupling GrIS subglacial hydrology and sliding.

    more » « less
  3. Abstract

    Ice cores and offshore sedimentary records demonstrate enhanced ice loss along Antarctic coastal margins during millennial-scale warm intervals within the last glacial termination. However, the distal location and short temporal coverage of these records leads to uncertainty in both the spatial footprint of ice loss, and whether millennial-scale ice response occurs outside of glacial terminations. Here we present a >100kyr archive of periodic transitions in subglacial precipitate mineralogy that are synchronous with Late Pleistocene millennial-scale climate cycles. Geochemical and geochronologic data provide evidence for opal formation during cold periods via cryoconcentration of subglacial brine, and calcite formation during warm periods through the addition of subglacial meltwater originating from the ice sheet interior. These freeze-flush cycles represent cyclic changes in subglacial hydrologic-connectivity driven by ice sheet velocity fluctuations. Our findings imply that oscillating Southern Ocean temperatures drive a dynamic response in the Antarctic ice sheet on millennial timescales, regardless of the background climate state.

    more » « less
  4. Ice sheets reshape Earth’s surface. Maps of the landscape formed by past ice sheets are our best tool for reconstructing historic ice sheet behavior. But models of glacier erosion and deposition that explain mapped features are relatively untested, and without observations of landforms developing in situ, postglacial landscapes can provide only qualitative insight into past ice sheet conditions. Here we present the first swath radar data collected in Antarctica, demonstrating the ability of swath radar technology to map the subglacial environment of Thwaites Glacier (West Antarctica) at comparable resolutions to digital elevation models of deglaciated terrain. Incompatibility between measured bedform orientation and predicted subglacial water pathways indicates that ice, not water, is the primary actor in initiating bedform development at Thwaites Glacier. These data show no clear relationship between morphology and glacier speed, a weak relationship between morphology and basal shear stress, and highlight a likely role for preexisting geology in glacial bedform shape. 
    more » « less
  5. Abstract

    Ice sheet evolution depends on subglacial conditions, with the ice‐bed interface's strength exerting an outsized role on the ice dynamics. Along fast‐flowing glaciers, this strength is often controlled by the deformation of subglacial till, making quantification of spatial variations of till strength essential for understanding ice‐sheet contribution to sea‐level. This task remains challenging due to a lack of in situ observations. We analyze continuous seismic data from the Whillans Ice Plain (WIP), West Antarctica, to uncover spatio‐temporal patterns in subglacial conditions. We exploit tidally modulated stick‐slip events as a natural source of sliding variability. We observe a significant reduction of the till seismic wave‐speed between the WIP sticky‐spots. These observations are consistent with a poroelastic model where the bed experiences relative porosity and effective pressure increases of >11% during stick‐slips. We conclude that dilatant strengthening appears to be an essential mechanism in stabilizing the rapid motion of fast‐flowing ice streams.

    more » « less