skip to main content


Title: Intrinsic exchange biased anomalous Hall effect in an uncompensated antiferromagnet MnBi2Te4
Abstract

Achieving spin-pinning at the interface of hetero-bilayer ferromagnet/antiferromagnet structures in conventional exchange bias systems can be challenging due to difficulties in interface control and the weakening of spin-pinning caused by poor interface quality. In this work, we propose an alternative approach to stabilize the exchange interaction at the interface of an uncompensated antiferromagnet by utilizing a gradient of interlayer exchange coupling. We demonstrate this exchange interaction through a designed field training protocol in the odd-layer topological antiferromagnet MnBi2Te4. Our results reveal a remarkable field-trained exchange bias of up to ~ 400 mT, which exhibits high repeatability and can be easily reset by a large training field. Notably, this field-trained exchange bias effect persists even with zero-field initialization, presenting a stark contrast to the traditional field-cooled exchange bias. The highly tunable exchange bias observed in this single antiferromagnet compound, without the need for an additional magnetic layer, provides valuable insight into the exchange interaction mechanism. These findings pave the way for the systematic design of topological antiferromagnetic spintronics.

 
more » « less
Award ID(s):
1936383
NSF-PAR ID:
10498752
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
15
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Spintronics applications of thin‐film magnets require control and design of specific magnetic properties. Exchange bias, originating from the pinning of spins in a ferromagnet by these of an antiferromagnet, is a part of the highly important elements for spintronics applications. Here, an exchange bias of ≈90 mT in a van der Waals ferromagnet encapsulated by two antiferromagnets at 5 K, the value of which is highly tunable by the field coolings, is reported. The non‐antisymmetric dependence of exchange bias on field cooling is explained through considering an uncompensated interfacial magnetic layer of an antiferromagnet with a noncollinear spin texture, and a weak antiferromagnetic order in the oxidized layer, at two ferromagnet/antiferromagnet interfaces. This work opens up new routes toward designing and controlling 2D spintronic devices made of atomically thin van der Waals magnets.

     
    more » « less
  2. Abstract

    Spin-orbit torques (SOT) enable efficient electrical control of the magnetic state of ferromagnets, ferrimagnets and antiferromagnets. However, the conventional SOT has severe limitation that only in-plane spins accumulate near the surface, whether interpreted as a spin Hall effect (SHE) or as an Edelstein effect. Such a SOT is not suitable for controlling perpendicular magnetization, which would be more beneficial for realizing low-power-consumption memory devices. Here we report the observation of a giant magnetic-field-like SOT in a topological antiferromagnet Mn3Sn, whose direction and size can be tuned by changing the order parameter direction of the antiferromagnet. To understand the magnetic SHE (MSHE)- and the conventional SHE-induced SOTs on an equal footing, we formulate them as interface spin-electric-field responses and analyzed using a macroscopic symmetry analysis and a complementary microscopic quantum kinetic theory. In this framework, the large out-of-plane spin accumulation due to the MSHE has an inter-band origin and is likely to be caused by the large momentum-dependent spin splitting in Mn3Sn. Our work demonstrates the unique potential of antiferromagnetic Weyl semimetals in overcoming the limitations of conventional SOTs and in realizing low-power spintronics devices with new functionalities.

     
    more » « less
  3. Abstract

    Combining topological insulators (TIs) and magnetic materials in heterostructures is crucial for advancing spin‐based electronics. Magnetic insulators (MIs) can be deposited on TIs using the spin‐spray process, which is a unique nonvacuum, low‐temperature growth process. TIs have highly reactive surfaces that oxidize upon exposure to atmosphere, making it challenging to grow spin‐spray ferrites on TIs. In this work, it is demonstrated that a thin titanium capping layer on TI, followed by oxidation in atmosphere to produce a thin TiOxinterfacial layer, protects the TI surface, without significantly compromising spin transport from the magnetic material across the TiOxto the TI surface states. First, it is demonstrated that in Bi2Te3/TiOx/Ni80Fe20heterostructures, TiOxprovides an excellent barrier against diffusion of magnetic species, yet maintains a large spin‐pumping effect. Second, the TiOxis also used as a protective capping layer on Bi2Te3, followed by the spin‐spray growth of the MI, NixZnyFe2O4(NZFO). For the thinnest TiOxbarriers, Bi2Te3/TiOx/NZFO samples have antiferromagnetic (AFM) disordered interfacial layer because of diffusion. With increasing TiOxbarrier thickness, the diffusion is reduced, but still maintains strong interfacial magnetic exchange‐interaction. These experimental results demonstrate a novel method of low‐temperature growth of magnetic insulators on TIs enabled by interface engineering.

     
    more » « less
  4. Abstract

    The quantum anomalous Hall (QAH) effect is characterized by a dissipationless chiral edge state with a quantized Hall resistance at zero magnetic field. Manipulating the QAH state is of great importance in both the understanding of topological quantum physics and the implementation of dissipationless electronics. Here, the QAH effect is realized in the magnetic topological insulator Cr‐doped (Bi,Sb)2Te3(CBST) grown on an uncompensated antiferromagnetic insulator Al‐doped Cr2O3. Through polarized neutron reflectometry (PNR), a strong exchange coupling is found between CBST and Al‐Cr2O3surface spins fixing interfacial magnetic moments perpendicular to the film plane. The interfacial coupling results in an exchange‐biased QAH effect. This study further demonstrates that the magnitude and sign of the exchange bias can be effectively controlled using a field training process to set the magnetization of the Al‐Cr2O3layer. It demonstrates the use of the exchange bias effect to effectively manipulate the QAH state, opening new possibilities in QAH‐based spintronics.

     
    more » « less
  5. Abstract

    Over the last decade, the possibility of realizing topological superconductivity (TSC) has generated much excitement. TSC can be created in electronic systems where the topological and superconducting orders coexist, motivating the continued exploration of candidate material platforms to this end. Here, we use molecular beam epitaxy (MBE) to synthesize heterostructures that host emergent interfacial superconductivity when a non-superconducting antiferromagnet (FeTe) is interfaced with a topological insulator (TI) (Bi, Sb)2Te3. By performing in-vacuo angle-resolved photoemission spectroscopy (ARPES) and ex-situ electrical transport measurements, we find that the superconducting transition temperature and the upper critical magnetic field are suppressed when the chemical potential approaches the Dirac point. We provide evidence to show that the observed interfacial superconductivity and its chemical potential dependence is the result of the competition between the Ruderman-Kittel-Kasuya-Yosida-type ferromagnetic coupling mediated by Dirac surface states and antiferromagnetic exchange couplings that generate the bicollinear antiferromagnetic order in the FeTe layer.

     
    more » « less